
Proof System Interoperability

Frédéric Blanqui

EuroProofNet

(URLs and purple texts are clickable)

https://blanqui.gitlabpages.inria.fr/
https://www.inria.fr/
https://europroofnet.github.io/
https://europroofnet.github.io/
https://blanqui.gitlabpages.inria.fr/
https://europroofnet.github.io/

Outline

Historical overview on proof system interoperability

How to encode logics in λΠ/R ?

Example: from HOL-Light to Coq via Lambdapi

Libraries of formal proofs today

Library Nb files Nb objects∗

Coq Opam 35,000 1,200,000
Isabelle AFP 7,500 280,000
Lean Mathlib 3,200 80,000
Mizar Mathlib 1,400 77,000
HOL-Light Lib 600 35,000

.

LOC

∗ type, definition, theorem, . . .

▶ Every system has its own basic libraries on integers, lists, reals, . . .

▶ Some definitions/theorems are available in one system only
and took several man-years to be formalized

https://github.com/coq/opam
https://www.isa-afp.org/
https://github.com/leanprover-community/mathlib
http://mizar.org/
https://github.com/jrh13/hol-light
https://www.isa-afp.org/statistics/

Libraries of formal proofs today

Library Nb files Nb objects∗

Coq Opam 35,000 1,200,000
Isabelle AFP 7,500 280,000
Lean Mathlib 3,200 80,000
Mizar Mathlib 1,400 77,000
HOL-Light Lib 600 35,000

.

LOC

∗ type, definition, theorem, . . .

▶ Every system has its own basic libraries on integers, lists, reals, . . .

▶ Some definitions/theorems are available in one system only
and took several man-years to be formalized

https://github.com/coq/opam
https://www.isa-afp.org/
https://github.com/leanprover-community/mathlib
http://mizar.org/
https://github.com/jrh13/hol-light
https://www.isa-afp.org/statistics/

Interest of proof system interoperability

▶ Avoid duplicating developments and losing time

▶ Facilitate development of new proofs and new systems

▶ Increase reliability of formal proofs (cross-checking)

▶ Facilitate validation by certification authorities

▶ Relativize the choice of a system (school, industry)

▶ Provide multi-system data to machine learning

Difficulties of proof system interoperability

▶ Each system is based on different axioms and deduction rules

▶ It is usually non trivial and sometimes impossible to translate a
proof from one system to the other (e.g. a classical proof in an
intuitionistic system)

Some milestones

▶ 1993: QED Manifesto
DIMACS format for CNF problems
TPTP format for FOL problems [Sutcliffe & al]

▶ 1996: HOL90 to NuPRL translator [Howe, statements only]

▶ 1998: MathML/OpenMath/OMDoc [Kohlhase & al]

▶ 2003: TPDB format for rewrite systems
TSTP proof format for ATPs
SMT-lib format for FOL/T problems
Flyspeck project with HOL-Light, Coq and Isabelle/HOL

▶ 2007: Functional PTSs in λΠ/R [Cousineau & Dowek]

▶ 2009: CPF proof format for termination provers

▶ 2011: Logic Atlas & Integrator [Kohlhase & al]

▶ 2013: DRAT proof format for SAT solvers [Heule & al]
MMT/Modules for Mathematical Theories [Rabe & al]

▶ 2020: Alethe proof format for SMT solvers [Fontaine & al]

https://en.wikipedia.org/wiki/QED_manifesto
http://archive.dimacs.rutgers.edu/pub/challenge/satisfiability/doc/
https://tptp.org/
https://www.w3.org/Math/
https://openmath.org/
https://www.omdoc.org/
https://www.lri.fr/~marche/tpdb/
https://tptp.org/TSTP/
http://smtlib.cs.uiowa.edu/
https://code.google.com/archive/p/flyspeck/
http://doi.org/10.1007/978-3-540-73228-0_9
http://cl-informatik.uibk.ac.at/software/cpf/
https://kwarc.info/projects/latin/
https://www.cs.utexas.edu/~marijn/drat-trim/
https://uniformal.github.io/
https://verit.loria.fr/documentation/alethe-spec.pdf

One-to-one translation tools
▶ HOL90 to NuPRL [Howe 1996, statements only]

▶ HOL98 to Coq [Denney 2000]

▶ HOL98 to NuPRL [Naumov et al 2001]
Flyspeck project with HOL-Light, Coq and Isabelle/HOL [2003]

▶ HOL to Isabelle/HOL [Obua 2006]

▶ Isabelle/HOL to HOL-Light [McLaughlin 2006]

▶ HOL-Light to Coq [Wiedijk 2007, no implementation]

▶ HOL-Light to Coq [Keller & Werner 2010]

▶ HOL-Light to HOL4 [Kumar 2013]

▶ HOL-Light to Metamath [Carneiro 2016]

▶ HOL4 to Isabelle/HOL [Immler et al 2019]

▶ Lean3 to Coq [Gilbert 2020]

▶ Lean3 to Lean4 [Lean community 2021]

▶ Maude to Lean [Rubio & Riesco 2022]

▶ . . .

Interoperability between n systems ?
1

2

3
...
n

1

2

3
...
n

n(n − 1) translators

Can’t we be more generic ?

1

2

3
...
n

1

2

3
...
n

D 2n translators

Interoperability between n systems ?
1

2

3
...
n

1

2

3
...
n

n(n − 1) translators

Can’t we be more generic ?

1

2

3
...
n

1

2

3
...
n

D 2n translators

A common language for proofs?

A logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D/S in D

How to translate a proof t ∈ A in a proof u ∈ B
in a logical framework D?

t

system A

u

system BD/A D/B

t’
1

u’
3

2

1. translate t ∈ A in t ′ ∈ D/A

2. identify the axioms and deduction rules of A used in t ′

translate t ′ ∈ D/A in u′ ∈ D/B if possible

3. translate u′ ∈ D/B in u ∈ B

⇒ equally represent functionalities common to A and B

How to translate a proof t ∈ A in a proof u ∈ B
in a logical framework D?

t

system A

u

system BD/A D/B

t’
1

u’
32

1. translate t ∈ A in t ′ ∈ D/A

2. identify the axioms and deduction rules of A used in t ′

translate t ′ ∈ D/A in u′ ∈ D/B if possible

3. translate u′ ∈ D/B in u ∈ B

⇒ equally represent functionalities common to A and B

How to translate a proof t ∈ A in a proof u ∈ B
in a logical framework D?

t

system A

u

system BD/A D/B

t’
1

u’
32

1. translate t ∈ A in t ′ ∈ D/A

2. identify the axioms and deduction rules of A used in t ′

translate t ′ ∈ D/A in u′ ∈ D/B if possible

3. translate u′ ∈ D/B in u ∈ B

⇒ equally represent functionalities common to A and B

A common language for proofs?

A logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D/S in D

Example: D = predicate calculus

allows one to represent S=geometry, S=arithmetic, S=set theory, . . .
not well suited for computation and dependent types

Better: D = λΠ-calculus modulo rewriting/Dedukti

allows one to represent also:
S=HOL, S=Coq, S=Agda, S=PVS, . . .

other options: λProlog, Twelf, Isabelle, Metamath, MMT. . .

https://www.lix.polytechnique.fr/~dale/lProlog/
http://twelf.org
https://isabelle.in.tum.de/
https://us.metamath.org/
https://uniformal.github.io/

A common language for proofs?

A logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D/S in D

Example: D = predicate calculus

allows one to represent S=geometry, S=arithmetic, S=set theory, . . .
not well suited for computation and dependent types

Better: D = λΠ-calculus modulo rewriting/Dedukti

allows one to represent also:
S=HOL, S=Coq, S=Agda, S=PVS, . . .

other options: λProlog, Twelf, Isabelle, Metamath, MMT. . .

https://www.lix.polytechnique.fr/~dale/lProlog/
http://twelf.org
https://isabelle.in.tum.de/
https://us.metamath.org/
https://uniformal.github.io/

The Dedukti world
▶ Zenon, ArchSAT, iProverModulo: ATPs generating Dedukti

▶ Holide: translator from OpenTheory to Dedukti

▶ Krajono: translator from Matita to Dedukti

▶ CoqInE: translator from Coq to Dedukti

▶ isabelle dedukti: translator from Isabelle to Dedukti

▶ hol2dk: translator from HOL-Light to Dedukti and Lambdapi

▶ Agda2Dedukti: translator from Agda to Dedukti

▶ personoj: translator from PVS to Lambdapi

▶ ekstrakto: translator from TSTP to Lambdapi

▶ B-pog-translator: translator from Atelier B to Lambdapi

▶ sttfaxport: translator from Dedukti to OpenTheory, Matita,
Coq, PVS and Lean3

▶ lambdapi: translator from Dedukti to Lambdapi, and from
Lambdapi to Dedukti and Coq

▶ . . .

https://github.com/Deducteam/zenon_modulo
https://github.com/Gbury/archsat
https://github.com/gburel/iProverModulo
https://github.com/Deducteam/holide
https://github.com/Deducteam/Krajono
https://github.com/Deducteam/CoqInE
https://github.com/Deducteam/isabelle_dedukti
https://github.com/Deducteam/hol2dk
https://github.com/Deducteam/Agda2Dedukti
https://github.com/Deducteam/personoj
https://github.com/Deducteam/ekstrakto
https://github.com/Deducteam/B-pog-translator
https://github.com/Deducteam/sttfaxport
https://github.com/Deducteam/lambdapi

Dedukti, an assembly language for proof systems

Dedukti

AtelierB
TLAPS

ICSPA project

K

Isabelle

HOL

Matita

Agda Lean

Mizar

CubicalTT

Coq

FoCaLiZe

Zenon
ArchSAT TSTP

Lambdapi PVS

automated
provers

Vampire, E, . . .

Nuprl?

Lambdapi = Dedukti + implicit arguments/coercions, tactics, . . .

https://github.com/Deducteam/Dedukti

https://github.com/Deducteam/lambdapi

https://github.com/Deducteam/Dedukti
https://github.com/Deducteam/lambdapi

Libraries translated to Dedukti

System Libraries

OpenTheory OpenTheory Library

HOL-Light hol.ml (all ML files soon?)
Matita Arithmetic Library
Coq Stdlib parts, GeoCoq parts

Isabelle HOL session, AFP parts (all AFP soon?)
Agda Stdlib parts (± 25%)
PVS Stdlib parts (statements only)
TPTP E 69%, Vampire 83% (for CNF only)

integration in TPTP World via GDV

Dedukti libraries can now be searched by using Lambdapi

See https://lambdapi.readthedocs.io/ and

Claudio Sacerdoti Coen’s talk on Friday afternoon at the
EuroProofNet meeting at the Cambridge Computer Lab

https://lambdapi.readthedocs.io/
https://europroofnet.github.io/cambridge-2023/

Libraries translated to Dedukti

System Libraries

OpenTheory OpenTheory Library

HOL-Light hol.ml (all ML files soon?)
Matita Arithmetic Library
Coq Stdlib parts, GeoCoq parts

Isabelle HOL session, AFP parts (all AFP soon?)
Agda Stdlib parts (± 25%)
PVS Stdlib parts (statements only)
TPTP E 69%, Vampire 83% (for CNF only)

integration in TPTP World via GDV

Dedukti libraries can now be searched by using Lambdapi

See https://lambdapi.readthedocs.io/ and

Claudio Sacerdoti Coen’s talk on Friday afternoon at the
EuroProofNet meeting at the Cambridge Computer Lab

https://lambdapi.readthedocs.io/
https://europroofnet.github.io/cambridge-2023/

Examples of translations via Dedukti

▶ Matita arith lib −→ OpenTheory, Coq, PVS, Lean [Thiré 2018]
http://logipedia.inria.fr

▶ Matita arith lib −→ Agda [Felicissimo 2023]

https://github.com/thiagofelicissimo/matita lib in agda

▶ HOL-Light −→ Coq

https://github.com/Deducteam/hol2dk/

▶ Isabelle/HOL −→ Coq

https://github.com/Deducteam/isabelle dedukti/

[Dubut, Yamada, B., Leray, Färber, Wenzel]

http://logipedia.inria.fr
https://github.com/thiagofelicissimo/matita_lib_in_agda
https://github.com/Deducteam/hol2dk/
https://github.com/Deducteam/isabelle_dedukti/

Outline

Historical overview on proof system interoperability

How to encode logics in λΠ/R ?

Example: from HOL-Light to Coq via Lambdapi

What is the λΠ-calculus modulo rewriting?

λΠ/R = λ simply-typed λ-calculus
+ Π dependent types, e.g. Array n
+ R identification of types modulo rewrites rules l ↪→ r

typing = typing of Edinburg’s Logical Framework LF including:

(abs)
Γ, x : A ⊢ t : B Γ ⊢ Πx : A,B : TYPE

Γ ⊢ λx : A, t : Πx : A,B
x /∈ Γ: types of

local variables

(app)
Γ ⊢ t : Πx : A,B Γ ⊢ u : A

Γ ⊢ tu : B{x 7→ u}

+ the rule (conv)
Γ ⊢ t : A A ≡βR B

Γ ⊢ t : B

≡βR: equational theory
generated by β and R

concat : Πp : N,Array p → Πq : N,Array q → Array(p + q)
concat 2 a 3 b : Array(2 + 3) ≡βR Array(5)

What is the λΠ-calculus modulo rewriting?

λΠ/R = λ simply-typed λ-calculus
+ Π dependent types, e.g. Array n
+ R identification of types modulo rewrites rules l ↪→ r

typing = typing of Edinburg’s Logical Framework LF including:

(abs)
Γ, x : A ⊢ t : B Γ ⊢ Πx : A,B : TYPE

Γ ⊢ λx : A, t : Πx : A,B
x /∈ Γ: types of

local variables

(app)
Γ ⊢ t : Πx : A,B Γ ⊢ u : A

Γ ⊢ tu : B{x 7→ u}

+ the rule (conv)
Γ ⊢ t : A A ≡βR B

Γ ⊢ t : B

≡βR: equational theory
generated by β and R

concat : Πp : N,Array p → Πq : N,Array q → Array(p + q)
concat 2 a 3 b : Array(2 + 3) ≡βR Array(5)

First-order logic

▶ the set of terms
built from a set of function symbols equipped with an arity

▶ the set of propositions
built from a set of predicate symbols equipped with an arity
and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃

▶ the set of axioms (the actual theory)

▶ the subset of provable propositions
using deduction rules, e.g. natural deduction:

(⇒-intro)
Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒-elim)

Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B

(∀-intro)
Γ ⊢ A x /∈ Γ

Γ ⊢ ∀x ,A
(∀-elim)

Γ ⊢ ∀x ,A
Γ ⊢ A{(x , u)}

. . .

Encoding of first-order logic

▶ the set of terms I : TYPE
built from a set of function symbols equipped with an arity

function symbol: I → . . . → I → I

▶ the set of propositions Prop : TYPE
built from a set of predicate symbols equipped with an arity

predicate symbol: I → . . . → I → Prop
and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃

⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .
we use λ-calculus to encode quantifiers:

we encode ∀x ,A as ∀(λx : I ,A)
how to encode proofs?

▶ the set of axioms (the actual theory)

▶ the subset of provable propositions
using deduction rules, e.g. natural deduction

Encoding of first-order logic

▶ the set of terms I : TYPE
built from a set of function symbols equipped with an arity

function symbol: I → . . . → I → I

▶ the set of propositions Prop : TYPE
built from a set of predicate symbols equipped with an arity

predicate symbol: I → . . . → I → Prop

and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃
⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .

we use λ-calculus to encode quantifiers:
we encode ∀x ,A as ∀(λx : I ,A)

how to encode proofs?

▶ the set of axioms (the actual theory)

▶ the subset of provable propositions
using deduction rules, e.g. natural deduction

Encoding of first-order logic

▶ the set of terms I : TYPE
built from a set of function symbols equipped with an arity

function symbol: I → . . . → I → I

▶ the set of propositions Prop : TYPE
built from a set of predicate symbols equipped with an arity

predicate symbol: I → . . . → I → Prop
and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃

⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .
we use λ-calculus to encode quantifiers:

we encode ∀x ,A as ∀(λx : I ,A)

how to encode proofs?

▶ the set of axioms (the actual theory)

▶ the subset of provable propositions
using deduction rules, e.g. natural deduction

Encoding of first-order logic

▶ the set of terms I : TYPE
built from a set of function symbols equipped with an arity

function symbol: I → . . . → I → I

▶ the set of propositions Prop : TYPE
built from a set of predicate symbols equipped with an arity

predicate symbol: I → . . . → I → Prop
and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃

⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .
we use λ-calculus to encode quantifiers:

we encode ∀x ,A as ∀(λx : I ,A)
how to encode proofs?

▶ the set of axioms (the actual theory)

▶ the subset of provable propositions
using deduction rules, e.g. natural deduction

Using λ-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

logic λ-calculus

proposition type
proof λ-term

proof checking type checking

assumption variable

⇒ →
⇒-intro abstraction
⇒-elim application

∀ Π
.

Using λ-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

by giving a name to every assumption, we get a typing environment

A1, . . . ,An ; x1 :A1, . . . , xn :An

by mapping every deduction rule to a λ-term construction
the typing rules of λΠ correspond to

the natural deduction rules

(⇒-intro)
Γ,

x :

A ⊢

t :

B

Γ ⊢

λx : A, t :

A ⇒ B

(⇒-elim)
Γ ⊢

t :

A ⇒ B Γ ⊢

u :

A

Γ ⊢

tu :

B

(∀-intro)
Γ ⊢

t :

A x /∈ Γ

Γ ⊢

λx , t :

∀x ,A

(∀-elim)
Γ ⊢

t :

∀x ,A
Γ ⊢

tu :

A{(x , u)}

Using λ-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

by giving a name to every assumption, we get a typing environment

A1, . . . ,An ; x1 :A1, . . . , xn :An

by mapping every deduction rule to a λ-term construction
the typing rules of λΠ correspond to the natural deduction rules

(⇒-intro)
Γ, x :A ⊢ t :B

Γ ⊢ λx : A, t :A ⇒ B

(⇒-elim)
Γ ⊢ t :A ⇒ B Γ ⊢ u :A

Γ ⊢ tu :B

(∀-intro)
Γ ⊢ t :A x /∈ Γ

Γ ⊢ λx , t :∀x ,A

(∀-elim)
Γ ⊢ t : ∀x ,A

Γ ⊢ tu : A{(x , u)}

Encoding the Curry-de Bruijn-Howard isomorphism

terms of type Prop are not types. . .

but we can interpret a proposition as a type by taking:

Prf : Prop → TYPE

Prf A is the type of proofs of proposition A

but
λx : Prf A, x : Prf A → Prf A

and
λx : Prf A, x ̸ : Prf (A ⇒ A)

unless we add the rewrite rule

Prf (A⇒B) ↪→ Prf A → Prf B

Encoding the Curry-de Bruijn-Howard isomorphism

terms of type Prop are not types. . .

but we can interpret a proposition as a type by taking:

Prf : Prop → TYPE

Prf A is the type of proofs of proposition A

but
λx : Prf A, x : Prf A → Prf A

and
λx : Prf A, x ̸ : Prf (A ⇒ A)

unless we add the rewrite rule

Prf (A⇒B) ↪→ Prf A → Prf B

Encoding the Curry-de Bruijn-Howard isomorphism

terms of type Prop are not types. . .

but we can interpret a proposition as a type by taking:

Prf : Prop → TYPE

Prf A is the type of proofs of proposition A

but
λx : Prf A, x : Prf A → Prf A

and
λx : Prf A, x ̸ : Prf (A ⇒ A)

unless we add the rewrite rule

Prf (A⇒B) ↪→ Prf A → Prf B

Encoding ⇒

because Prf (A ⇒ B) ↪→ Prf A → Prf B

the introduction rule for ⇒ is the abstraction:

(⇒-intro)
Γ,A ⊢ B

Γ ⊢ A ⇒ B

(abs)
Γ, x : Prf A ⊢ t : Prf B

Γ ⊢ λx : A, t : Prf A → Prf B
(conv)

Γ ⊢ λx : A, t : Prf (A ⇒ B)

the elimination rule for ⇒ is the application:

(⇒-elim)
Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B

(conv)
Γ ⊢ t : Prf (A ⇒ B)

Γ ⊢ t : Prf A → Prf B
(app)

Γ ⊢ u : Prf A

Γ ⊢ tu : Prf B

Encoding ⇒

because Prf (A ⇒ B) ↪→ Prf A → Prf B

the introduction rule for ⇒ is the abstraction:

(⇒-intro)
Γ,A ⊢ B

Γ ⊢ A ⇒ B

(abs)
Γ, x : Prf A ⊢ t : Prf B

Γ ⊢ λx : A, t : Prf A → Prf B
(conv)

Γ ⊢ λx : A, t : Prf (A ⇒ B)

the elimination rule for ⇒ is the application:

(⇒-elim)
Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B

(conv)
Γ ⊢ t : Prf (A ⇒ B)

Γ ⊢ t : Prf A → Prf B
(app)

Γ ⊢ u : Prf A

Γ ⊢ tu : Prf B

Encoding ∀

we can do something similar for ∀ : (I → Prop) → Prop by taking:

Prf (∀A) ↪→ Πx : I ,Prf (Ax)

then the introduction rule for ∀ is the abstraction
and the elimination rule for ∀ is the application

Encoding the other connectives
the other connectives can be defined
by using a meta-level quantification on propositions:

Prf (A∧B) ↪→ ΠC : Prop, (Prf A → Prf B → Prf C) → Prf C

introduction and elimination rules can be derived:

(∧-intro):

λa : Prf A, λb : Prf B, λC : Prop, λh : Prf A → Prf B → Prf C , hab
is of type

Prf A → Prf B → Prf (A ∧ B)

(∧-elim1):

λc : Prf (A ∧ B), c A (λa : Prf A, λb : Prf B, a)
is of type

Prf (A ∧ B) → Prf A

Encoding the other connectives
the other connectives can be defined
by using a meta-level quantification on propositions:

Prf (A∧B) ↪→ ΠC : Prop, (Prf A → Prf B → Prf C) → Prf C

introduction and elimination rules can be derived:

(∧-intro):

λa : Prf A, λb : Prf B, λC : Prop, λh : Prf A → Prf B → Prf C , hab
is of type

Prf A → Prf B → Prf (A ∧ B)

(∧-elim1):

λc : Prf (A ∧ B), c A (λa : Prf A, λb : Prf B, a)
is of type

Prf (A ∧ B) → Prf A

To summarize: λΠ/R-theory FOL for first-order logic

signature ΣFOL:

I : TYPE
f : I → . . . → I → I for each function symbol f of arity n
Prop : TYPE
P : I → . . . → I → Prop for each predicate symbol P of arity n
⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .
Prf : Prop → TYPE

a : Prf A for each axiom A

rules RFOL:

Prf (A⇒B) ↪→ Prf A → Prf B
Prf (∀A) ↪→ Πx : I ,Prf (Ax)

Prf (A∧B) ↪→ ΠC : Prop, (Prf A → Prf B → Prf C) → Prf C
Prf⊥ ↪→ ΠC : Prop,Prf C

Prf (¬A) ↪→ Prf A → Prf⊥
. . .

Encoding of first-order logic in λΠ/FOL

encoding of terms:

|x | = x
|ft1 . . . tn| = f |t1| . . . |tn|

encoding of propositions:

|Pt1 . . . tn| = P|t1| . . . |tn|
|⊤| = ⊤
|A ∧ B| = |A| ∧ |B|
|∀x ,A| = ∀(λx : I , |A|)
. . .
|Γ,A| = |Γ|, x∥Γ∥+1 : A

encoding of proofs:∣∣∣∣∣ πΓ,A⊢B

Γ ⊢ A ⇒ B
(⇒i)

∣∣∣∣∣ = λx∥Γ∥+1 : Prf |A|, |πΓ,A⊢B |∣∣∣∣∣πΓ⊢A⇒B πΓ⊢A

Γ ⊢ B
(⇒e)

∣∣∣∣∣ = |πΓ⊢A⇒B | |πΓ⊢A|

. . .

Properties of the encoding in λΠ/FOL

▶ a term is mapped to a term of type I

▶ a proposition is mapped to a term of type Prop

▶ a proof of A is mapped to a term of type Prf |A|

if we find t of type Prf |A|, can we deduce that A is provable ?

▶ yes, the encoding is conservative:
if Prf |A| is inhabited then A is provable

proof sketch: because ↪→βR terminates and is confluent, t has a
normal form, and terms in normal form can be easily translated
back in first-order logic and natural deduction

Properties of the encoding in λΠ/FOL

▶ a term is mapped to a term of type I

▶ a proposition is mapped to a term of type Prop

▶ a proof of A is mapped to a term of type Prf |A|

if we find t of type Prf |A|, can we deduce that A is provable ?

▶ yes, the encoding is conservative:
if Prf |A| is inhabited then A is provable

proof sketch: because ↪→βR terminates and is confluent, t has a
normal form, and terms in normal form can be easily translated
back in first-order logic and natural deduction

Properties of the encoding in λΠ/FOL

▶ a term is mapped to a term of type I

▶ a proposition is mapped to a term of type Prop

▶ a proof of A is mapped to a term of type Prf |A|

if we find t of type Prf |A|, can we deduce that A is provable ?

▶ yes, the encoding is conservative:
if Prf |A| is inhabited then A is provable

proof sketch: because ↪→βR terminates and is confluent, t has a
normal form, and terms in normal form can be easily translated
back in first-order logic and natural deduction

Multi-sorted first-order logic

for each sort Ik (e.g. point, line, circle), add:

Ik : TYPE
∀k : (Ik → Prop) → Prop

Prf (∀kA) ↪→ Πx : Ik ,Prf (Ax)

Polymorphic first-order logic

same trick as Curry-de Bruijn-Howard

Set : TYPE
El : Set → TYPE

ι : Set for each sort ι
∀ : Πa : Set, (El a → Prop) → Prop

Prf (∀ap) ↪→ Πx : El a,Prf (p x)

Higher-order logic

order quantification on

1 elements
2 sets of elements
3 sets of sets of elements
.
ω any set

quantification on functions:

; : Set → Set → Set

El(a; b) ↪→ El a → El b

quantification on propositions/impredicativity (e.g. ∀p, p ⇒ p):

o : Set

El o ↪→ Prop

Higher-order logic

order quantification on

1 elements
2 sets of elements
3 sets of sets of elements
.
ω any set

quantification on functions:

; : Set → Set → Set

El(a; b) ↪→ El a → El b

quantification on propositions/impredicativity (e.g. ∀p, p ⇒ p):

o : Set

El o ↪→ Prop

Higher-order logic

order quantification on

1 elements
2 sets of elements
3 sets of sets of elements
.
ω any set

quantification on functions:

; : Set → Set → Set

El(a; b) ↪→ El a → El b

quantification on propositions/impredicativity (e.g. ∀p, p ⇒ p):

o : Set

El o ↪→ Prop

Encoding dependent constructions

dependent implication:

⇒d : Πa : Prop, (Prf a → Prop) → Prop

Prf (a⇒d b) ↪→ Πx : Prf a,Prf (b x)

dependent types:

;d : Πa : Set, (El a → Set) → Set

El(a;d b) ↪→ Πx : El a,El(b x)

proofs in object-terms:

π : Πp : Prop, (Prf p → Set) → Set

El(π p a) ↪→ Πx : Prf p,El(a x)

example: div : El(ι; ι;d λy : El ι, π(y > 0)(λ , ι))
takes 3 arguments: x : El ι, y : El ι, p : Prf (y > 0)
and returns a term of type El ι

Encoding dependent constructions

dependent implication:

⇒d : Πa : Prop, (Prf a → Prop) → Prop

Prf (a⇒d b) ↪→ Πx : Prf a,Prf (b x)

dependent types:

;d : Πa : Set, (El a → Set) → Set

El(a;d b) ↪→ Πx : El a,El(b x)

proofs in object-terms:

π : Πp : Prop, (Prf p → Set) → Set

El(π p a) ↪→ Πx : Prf p,El(a x)

example: div : El(ι; ι;d λy : El ι, π(y > 0)(λ , ι))
takes 3 arguments: x : El ι, y : El ι, p : Prf (y > 0)
and returns a term of type El ι

Encoding dependent constructions

dependent implication:

⇒d : Πa : Prop, (Prf a → Prop) → Prop

Prf (a⇒d b) ↪→ Πx : Prf a,Prf (b x)

dependent types:

;d : Πa : Set, (El a → Set) → Set

El(a;d b) ↪→ Πx : El a,El(b x)

proofs in object-terms:

π : Πp : Prop, (Prf p → Set) → Set

El(π p a) ↪→ Πx : Prf p,El(a x)

example: div : El(ι; ι;d λy : El ι, π(y > 0)(λ , ι))
takes 3 arguments: x : El ι, y : El ι, p : Prf (y > 0)
and returns a term of type El ι

Encoding the systems of Barendregt’s λ-cube

system PTS rule λΠ/R rule
simple types TYPE, TYPE Prf (a⇒d b) ↪→ Πx : Prf a,Prf (b x)

polymorphic types KIND, TYPE Prf (∀ab) ↪→ Πx : El a,Prf (b x)
dependent types TYPE, KIND El(π a b) ↪→ Πx : Prf a,El(b x)
type constructors KIND, KIND El(a;d b) ↪→ Πx : El a,El(b x)

λ→

λ2

λω

λΠ

λΠω

λΠ2

λω λΠω

λ→ dependent
types

polymorphic
types

type
constructors

adding

ad
d
in
g

ad
di
ng

The modular λΠ/R theory U and its sub-theories
[B., Dowek, Grienenberger, Hondet, Thiré 2021]

Lambdapi files

http://doi.org/10.46298/lmcs-19(1:12)2023
https://github.com/Deducteam/lambdapi-logics/tree/master/U

Functional Pure Type Systems (S,A,P) A ⊆ S2,P ⊆ S2 × S

terms and types:

t := x | tt | λx : t, t | Πx : t, t | s ∈ S

typing rules:

∅ ⊢
Γ ⊢ A : s

Γ, x : A ⊢
Γ ⊢ (x ,A) ∈ Γ

Γ ⊢ x : A

(sort)
Γ ⊢ (s1, s2) ∈ A

Γ ⊢ s1 : s2

(prod)
Γ ⊢ A : s1 Γ, x : A ⊢ B : s2 ((s1, s2), s3) ∈ P

Γ ⊢ Πx : A,B : s3

Γ, x : A ⊢ t : B Γ ⊢ Πx : A,B : s

Γ ⊢ λx : A, t : Πx : A,B

Γ ⊢ t : Πx : A,B Γ ⊢ u : A

Γ ⊢ tu : B{(x , u)}
Γ ⊢ t : A A ≃β A′ Γ ⊢ A′ : s

Γ ⊢ t : A′

Encoding Functional Pure Type Systems
[Cousineau & Dowek 2007]

signature:

Us : TYPE for each sort s ∈ S
Els : Us → TYPE

s1 : Us2 for every (s1, s2) ∈ A
πs1,s2 : Πa : Us1 , (Els1 a → Us2) → Us3 for every ((s1, s2), s3) ∈ P

rules:

Els2 s1 ↪→ Us1 for every (s1, s2) ∈ A
Els3(πs1,s2 a b) ↪→ Πx : Els1 a,Els2(b x) for every ((s1, s2), s3) ∈ P

encoding:

|x |Γ = x
|s|Γ = s
|λx : A, t|Γ = λx : Els |A|Γ, |t|Γ,x :A if Γ ⊢ A : s
|tu|Γ = |t|Γ|u|Γ
|Πx : A,B|Γ = πs1,s2 |A|Γ(λx : Els1 |A|Γ, |B|Γ,x :A)

if Γ ⊢ A : s1 and Γ, x : A ⊢ B : s2

Encoding other features

▶ recursive functions [Assaf 2015, Cauderlier 2016, Férey 2021]

– different approaches, no general theory
– encoding in recursors [ongoing work by Felicissimo & Cockx]

▶ universe polymorphism [Genestier 2020]

– requires rewriting with matching modulo AC
or rewriting on AC canonical forms [B. 2022]

▶ η-conversion on function types [Genestier 2020]

▶ predicate subtyping with proof irrelevance [Hondet 2020]

▶ co-inductive objects and co-recursion [Felicissimo 2021]

Outline

Historical overview on proof system interoperability

How to encode logics in λΠ/R ?

Example: from HOL-Light to Coq via Lambdapi

Previous works & tools on HOL to Coq

▶ Denney 2000: translates HOL98 proofs [Wong 1999] to Coq
scripts using some intermediate stack-based machine language

▶ Wiedijk 2007: describes a translation of HOL-Light logic and
proofs in Coq terms via shallow embedding (no implementation)

▶ Keller & Werner 2010: translates HOL-Light proofs [Obua &
Skalberg 2006] to Coq terms via deep embedding &
computational reflection (but no automatic shallow embedding)

▶ B. 2023: implements Wiedijk approach to translate HOL-Light
proofs [Polu 2019] to Coq via a shallow embedding in Lambdapi

Previous works & tools on HOL to Coq

▶ Denney 2000: translates HOL98 proofs [Wong 1999] to Coq
scripts using some intermediate stack-based machine language

▶ Wiedijk 2007: describes a translation of HOL-Light logic and
proofs in Coq terms via shallow embedding (no implementation)

▶ Keller & Werner 2010: translates HOL-Light proofs [Obua &
Skalberg 2006] to Coq terms via deep embedding &
computational reflection (but no automatic shallow embedding)

▶ B. 2023: implements Wiedijk approach to translate HOL-Light
proofs [Polu 2019] to Coq via a shallow embedding in Lambdapi

Converting HOL-Light proofs to Coq via Lambdapi

▶ https://github.com/Deducteam/hol2dk

– provides a small patch for HOL-Light to export proofs

improves ProofTrace [Polu 2019] by reducing memory

consumption and adding on-the-fly writing on disk

– translates HOL-Light proofs to Dedukti and Lambdapi

▶ https://github.com/Deducteam/lambdapi

– allows to converts dk/lp files using some encodings of HOL
into Coq files

https://github.com/Deducteam/hol2dk
https://github.com/Deducteam/lambdapi

HOL-Light logic

⊢ t = t
REFL

Γ ⊢ s = t ∆ ⊢ t = u

Γ ∪∆ ⊢ s = u
TRANS

Γ ⊢ s = t ∆ ⊢ u = v

Γ ∪∆ ⊢ su = tv
MK COMB

Γ ⊢ s = t

λx , s = λx , t
ABS

⊢ (λx , t)x = t
BETA

{p} ⊢ p
ASSUME

Γ ⊢ p = q ∆ ⊢ p

Γ ∪∆ ⊢ q
EQ MP

Γ ⊢ p ∆ ⊢ q

(Γ− {q}) ∪ (∆− {p}) ⊢ p = q
DEDUCT ANTISYM RULE

Γ ⊢ p

Γθ ⊢ pθ
INST

Γ ⊢ p

ΓΘ ⊢ pΘ
INST TYPE

HOL-Light logic: connectives are defined from equality!

⊤ =def (λp.p) = (λp.p)
∧ =def λp.λq.(λf .fpq) = (λf .f⊤⊤)
⇒=def λp.λq.(p ∧ q) = p
∀ =def λp.p = (λx .⊤)
∃ =def λp.∀q.(∀x .px ⇒ q) ⇒ q
∨ =def λp.λq.∀r .(p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊥ =def ∀p.p
¬ =def λp.p ⇒ ⊥

Example: hol.ml (HOL-Light standard library)

loads "pair.ml";; (* Theory of pairs *)

loads "compute.ml";; (* General call-by-value reduction tool for terms *)

loads "nums.ml";; (* Axiom of Infinity, definition of natural numbers *)

loads "recursion.ml";; (* Tools for primitive recursion on inductive types *)

loads "arith.ml";; (* Natural number arithmetic *)

loads "wf.ml";; (* Theory of wellfounded relations *)

loads "calc_num.ml";; (* Calculation with natural numbers *)

loads "normalizer.ml";; (* Polynomial normalizer for rings and semirings *)

loads "grobner.ml";; (* Groebner basis procedure for most semirings *)

loads "ind_types.ml";; (* Tools for defining inductive types *)

loads "lists.ml";; (* Theory of lists *)

loads "realax.ml";; (* Definition of real numbers *)

loads "calc_int.ml";; (* Calculation with integer-valued reals *)

loads "realarith.ml";; (* Universal linear real decision procedure *)

loads "real.ml";; (* Derived properties of reals *)

loads "calc_rat.ml";; (* Calculation with rational-valued reals *)

loads "int.ml";; (* Definition of integers *)

loads "sets.ml";; (* Basic set theory *)

loads "iterate.ml";; (* Iterated operations *)

loads "cart.ml";; (* Finite Cartesian products *)

loads "define.ml";; (* Support for general recursive definitions *)

Results for hol.ml by instrumenting rules only

▶ number of theorems: 2834

▶ number of proof steps: 14.3 M

▶ proof file size: 5.5 Go

▶ checking time by OCaml without proof generation: 1m14s

▶ checking time by OCaml with proof generation: 2m9s (+74%)

rule % steps
refl 26
eqmp 21

term-subst 15
trans 11

mk-comb 10
deduct 7

type-subst 4
abs 2
beta 2

assume 2

Reducing proof size by instrumenting basic tactics
▶ introduction/elimination rules of connectives
▶ alpha conversion (20% of proof steps!)

instrumenting
rules only connectives,alpha variation

steps 14.3 M 8.9 M -38%

size 5.5 Go 3.1 Go -44%

% steps
rule rules only connectives,alpha variation
refl 26 29 +3
eqmp 21 19 -2

term-subst 15 12 -3
trans 11 6 -5

mk-comb 10 17 +7
deduct 7 1 -6

type-subst 4 3 -1
abs 2 2 0
beta 2 3 +1

assume 2 1 -1

Reducing proof size by instrumenting basic tactics
▶ introduction/elimination rules of connectives
▶ alpha conversion (20% of proof steps!)

instrumenting
rules only connectives,alpha variation

steps 14.3 M 8.9 M -38%

size 5.5 Go 3.1 Go -44%

% steps
rule rules only connectives,alpha variation
refl 26 29 +3
eqmp 21 19 -2

term-subst 15 12 -3
trans 11 6 -5

mk-comb 10 17 +7
deduct 7 1 -6

type-subst 4 3 -1
abs 2 2 0
beta 2 3 +1

assume 2 1 -1

Translation of hol.ml to Dedukti and Lambdapi

HOL-Light proof file: 3.1 Go (8.9 M proof steps)

the translation can be done in parallel:

dk lp

size 3.3 Go 2.2 Go

time 1 thread 22m37s 12m8s

time 7 threads 9m2s 4m23s

Checking generated Dedukti files

the obtained Dedukti files are big (3.3 Go)

but can be checked in 12m52s by kocheck:

Safe, fast, concurrent proof checking for the lambda-pi calculus
modulo rewriting, M. Färber, CPP’22

lambdapi is too slow and requires too much memory

https://github.com/01mf02/kontroli-rs
https://github.com/Deducteam/lambdapi

Translation of HOL to Coq

HOL proofs can be translated to Coq using the following axioms:

▶ Indefinite description/Hilbert ε:
forall A (P:A->Prop), (exists x, P x) -> {x : A | P x}

▶ Functional extensionnality:
forall A B (f g:A -> B), (forall x, f x = g x) -> f = g

▶ Propositional extensionnality:
forall (P Q:Prop), (P -> Q) -> (Q -> P) -> P = Q

and by mapping:

▶ HOL-Light types to Coq non-empty types (canonical structure)

▶ HOL-Light bool type to Coq type of propositions

▶ HOL-Light natural numbers to Coq natural numbers

▶ HOL-Light connectives to Coq connectives

▶ HOL-Light equality to Coq equality

▶ . . .

Translation of Lambdapi/HOL to Coq

Lambdapi can translate dk/lp files using HOL encodings to Coq

Example: lp files obtained from hol.ml

▶ lp files size: 2.2 Go

▶ translation to Coq: 2m22s

▶ coq files size: 2.1 Go

but Coq requires several hours to check those files on a powerful
machine (RAM > 32 Go required)

A smaller example: HOL-Light basic arithmetic library

proof dumping 11.7s, 82 Mo, 324 K proof steps

dk file generation 6.6s, 82 Mo

checking time with dk check 13.6s

lp file generation 3.7s, 56 Mo

checking time with lambdapi 1m22s

translation to Coq 2.8s, 52 Mo

checking time with Coq 8.17.1 4m

example output:

Lemma thm_DIV_DIV : forall m : nat, forall n : nat,

forall p : nat, (DIV (DIV m n) p) = (DIV m (mul n p)).

Lemma thm_DIV_MOD : forall m : nat, forall n : nat,

forall p : nat, (MOD (DIV m n) p) = (DIV (MOD m (mul n p)) n).

TODO on hol2dk

▶ comparison with previous work difficult since their code is lost or
not (easily) working anymore (they are not maintained)

▶ instrument symmetry, definition unfoldings and rewrite tactics
to reduce the size of proofs further

▶ map each ML file to a dk/lp file

▶ make dk/lp translation incremental

Conclusion

▶ interoperability theory/tools developed for 30 years now
but few tools are really usable for lack of maintenance

▶ significant progresses have been done on genericity
by using the λΠ-calculus modulo rewriting/Dedukti

▶ works well for medium-size developments with simple structures
(integers, lists, . . .) and automated theorem provers, e.g.

integration of Lambdapi in TPTP World/GDV [Sutcliffe]

▶ some people are skeptikal on the usability of translations on
complex structures but some progress is ongoing, e.g. translation
of type classes between Isabelle & Coq [Sacerdoti & Tassi]

▶ improving scalability, modularity, usability and reproducibility are
exciting research problems!

	Historical overview on proof system interoperability
	How to encode logics in /R ?
	Example: from HOL-Light to Coq via Lambdapi

