https://github.com/Deducteam/lambdapi/

Lambdapi,
a proof assistant

featuring rewriting

Frédéric Blanqui
E .
=k (reia—

(URLs and purple texts are clickable)

https://github.com/Deducteam/lambdapi/
https://blanqui.gitlabpages.inria.fr/
https://europroofnet.github.io/
https://www.inria.fr/
https://europroofnet.github.io/

Lambdapi contributors

Work started in 2017 with various contributors over the years:

Alessio Coltellacci (2023-), Gabriel Hondet (2019-2022), Ashish
Kumar Barnawal (2020-2021), Emilio Gallego (2018-2021),
Aurélien Castre (2021), Yann Leray (2021), Diego Riverio (2020),
Amélie Ledein (2020), Francois Lefoulon (2020), Rehan Malak
(2019-2020), Yacine El Haddad (2019), Guillaume Genestier
(2019), Houda Mouzoun (2019), Aristomenis-Dionysios
Papadopoulos (2019), Franck Slama (2019), Jui-Hsuan Wu (2019),
Christophe Raffalli (2017-2018), Rodolphe Lepigre (2017-2020)

What is Lambdapi?

» a proof assistant
software to build and check formal proofs (interactively)

What is Lambdapi?

» a proof assistant

software to build and check formal proofs (interactively)
P> a logical framework

one can define its own logic

What is Lambdapi?

» a proof assistant

software to build and check formal proofs (interactively)
P> a logical framework

one can define its own logic
» based on the All-calculus modulo rewriting

— functions are first-class expressions

— expressions must be well-typed

— allows dependent types, e.g. array(n)

— both functions and types can be defined by rewrite rules

>

| 2

>

What is Lambdapi?

a proof assistant

software to build and check formal proofs (interactively)

a logical framework

one can define its own logic

based on the All-calculus modulo rewriting

— functions are first-class expressions

— expressions must be well-typed

— allows dependent types, e.g. array(n)

— both functions and types can be defined by rewrite rules
providing tools to check important properties

— local confluence

— subject reduction, aka preservation of typing by rewiting

What is Lambdapi?

» a proof assistant

software to build and check formal proofs (interactively)
P> a logical framework

one can define its own logic
» based on the All-calculus modulo rewriting

— functions are first-class expressions

— expressions must be well-typed

— allows dependent types, e.g. array(n)

— both functions and types can be defined by rewrite rules
P providing tools to check important properties

— local confluence

— subject reduction, aka preservation of typing by rewiting
» and import/export other formats

— XTC (termination checkers)

— HRS (confluence checkers)

— dk (Dedukti)

- v (Coq)

Outline

What is the All-calculus modulo rewriting?

What is the All-calculus modulo rewriting?

AM/R =
A

+ M

+R

simply-typed A-calculus
dependent types, e.g. array(n)
identification of types modulo rewrites rules | < r

What is the All-calculus modulo rewriting?

AM/R =
A

+ M

+R

terms t,u =
TYPE

f

X

tu

Ax:t,u
Mx:tu
t—u

simply-typed A-calculus
dependent types, e.g. array(n)
identification of types modulo rewrites rules | < r

sort of types

global constant

local variable

application

abstraction

dependent product

abbreviation for Mx : t,u when x ¢ u

What is the All-calculus modulo rewriting?

theory =
> sequence of type declarations for global constants
+R set of rewrite rules [< r

including rules on types!

What is the All-calculus modulo rewriting?

theory =
> sequence of type declarations for global constants
+R set of rewrite rules [< r
including rules on types!
typing = ...+
Mx:AFt:B THIMx:A B:TYPE [types of

N=Xx:At:Mx:AB local variables

N=t:Mx:AB TFu:A
It tu: B{x+— u}

N=t:A A=z B =psR: equational theory
N-t:B generated by 5 and R

concat : Mp: N,array p — lNq : N,array g — array(p + q)
concat 2 a 3 b : array(2 + 3) =gr array(5)

Hierarchy of terms in A/R

there is a priori no distinction between terms and types
yet typing rules induce the following hierarchy on terms:

object t : type-family A : type-arity K
0 : N : TYPE
s : N— N : TYPE
: array : N — TYPE
empty array 0 : TYPE
class grammar
type-arities K TYPE | Mx : A K

type-families A | X | At |Tx: AJA| Ax: A A
objects t x| tt] Ax At

Properties of the All-calculus modulo rewriting

AM/R enjoys all the properties of AlN:
» unicity of types modulo =g
» decidability of =gr and type-checking

assuming that —gr:

> terminates: there is no infinite < g sequences

» is confluent: the order of <3 steps does not matter
> R preserves typing: if [0 : Aand | — r € R then rf : A

All these properties are undecidable

Fortunately, we have theorems and tools for checking those
properties in some cases (see later)

Outline

How to use Lambdapi to rewrite terms and build proofs?

Where to find Lambdapi?

Website: nttps://github.com/Deducteam/lambdapi
Libraries: https://github.com/Deducteam/opam-lambdapi-repository
User manual: https://lambdapi.readthedocs.io/

Lambdapi User Manual

Docs » Lambdapi User Manual © Edit on G

Lambdapi User Manual

Lambdapi is a proof assistant for the AlM-calculus modulo rewriting. See What is Lambdapi? fc
more details.

Lambdapi files must end with .1p . But Lambdapi can also read Dedukti files ending with .d

convert them to Lambdapi files (see Compatibility with Dedukti).
Installation instructions - Frequently Asked Questions - Issue tracker
Learn Lambdapi in 15 minutes

Examples of developments made with Lambdapi:

e Library on natural numbers, integers and polymorphic lists

* Example of inductive-recursive type definition

e Example of inductive-inductive type definition

https://github.com/Deducteam/lambdapi
https://github.com/Deducteam/opam-lambdapi-repository
https://lambdapi.readthedocs.io/

How to use Lambdapi?

e Batch mode:

lambdapi check file.lp

e Interactive mode through an editor using a LSP server:
— Emacs (package available on MELPA)
— VSCode (package available on VSCode Marketplace)

Emacs interface

= emacs@blangui-Latitude-5500
Fle et Opions Buflers Toos Fymake Help

[SLIG0 X [slswe | hun | & 61 B | Q @ & [@R]%0

checked part

<—— edition buffer

kelo 501 ¢

- i

TR N, P (0 e = x)

~— goals

= b o]

window layout

<« messages _
can be customized

shortcuts: https://lambdapi.readthedocs.io/en/latest/emacs.html

https://lambdapi.readthedocs.io/en/latest/emacs.html

VSCode interface

tutorialIp - Visual Studio Code - -

twtoriallp x [u] oals

301 builtin "T* = 1
302 builtin "eq” =
303 builtin “refl*
Bl o0 builtin eqing

0 Prf ((ze2) =
checked part
1 N x0: Nat, Prf ((z @ x8) = x0) = Prf ((z e s x0) = s x0)

306 /* We now reprove our theorem on the inductive type Nat instead of N,
307 using the tactics *induction”, "reflexivity" and “rewrite*
308 To this end, we first need to define addition on Nat: */

310 Symbol e i Nat = Nat = Natj
311 potation ® infix right 10;
312 rule $x ez v $x

313 with $x e s $y w5 ($x @ $y);

S ———— £ goals

317 jnduction
318 | simplify; reflexivity; J

edition buffer .
window layout
- can be customized
rule ind_Nat $6 $1 $2 z (5] bash blangt

i messages

ynb

notatmn + mhx right associative 10.000000;
rule

"Ath f0 < Surc 81 « suce (49 + 1)

with 6+ $0 « $0;

Ln318,Col23 Spacesi2 UTFS LF Lambdapi G

shortcuts: https://lambdapi.readthedocs.io/en/latest/vscode.html

https://lambdapi.readthedocs.io/en/latest/vscode.html

Lambdapi syntax

file extension: .1p

BNF grammar:

https://raw.githubusercontent.com/Deducteam/lambdapi/master/doc/lambdapi.bnf
comments: /* ... /x... x/... x/0r // ...
identifiers: UTF16 characters and {| arbitrary string |}

commands for defining a Al1/R theory:
> symbol for declaring/defining a symbol

» rule for adding a (set of) rewrite rules

https://raw.githubusercontent.com/Deducteam/lambdapi/master/doc/lambdapi.bnf

Syntax of terms

TYPE sort for types
(id.)*id variable or constant
term term . ..term application
Mid[: term], term abstraction
nid|[: term] , term dependent product
term — term non-dependent product

_ unknown term
let id [: term] := term in term
(term)

Command for declaring/defining a symbol

modifier* symbol id param* [: term | [:= term | [begin proof end] ;

param=id| _| Cid* : term) | [id ™ : term]
implicit
parameters

symbol N : TYPE;

symbol 0 : N;

symbol s : N — N;

symbol + : N - N — N; notation + infix right 10;
symbol X : N - N — N; notation X infix right 20;

VVvVyVvyVvVVVYVYY

Symbol modifiers

constant: not definable

opaque: never unfolded

associative

commutative

private: not exported

protected: exported but usable in rule left-hand sides only
sequential: reduction strategy

injective: unification hint

Handling of C/AC symbols in Lambdapi

When a symbol is declared C/AC, Lambdapi implicitly put terms in
some canonical form wrt C/AC

On the implementation of construction functions for non-free
concrete data types, ESOP 2007, with Thérése Hardin, Pierre Weis

This is sufficient to handle simple functions without using
matching modulo AC

Command for adding rewrite rules

rule term — term (with term — term)* ;

pattern variables must be prefixed by $:

rule $x + 0 — $x
with $x + s $y —> s ($x + $y);

Lambdapi tries to automatically check:
» local confluence (AC symbols/HO patterns not handled yet)
> preservation of typing (aka subject reduction)

Rules accepted by Lambdapi

overlapping rules

rule $x + 0 — $x
with $x + s $y — s ($x + $y)
with 0 + $x — $x
with s $x + $y — s ($x + $y);

matching on defined symbols

rule ($x + $y) + $z — $x + ($y + $2);
non-linear patterns

rule $x - $x — 0;

higher-order patterns

symbol R:TYPE; symbol O:R; symbol sin:R — R;
symbol cos:R — R; symbol D:(R — R) — (R — R);

rule D (A x, sin $F.[x]) —< X x, D $F.[x] X cos $F.[x];
rule D (A x, $V.[]) < X x, O;

Example: decision procedure for group theory

symbol G
symbol 1
symbol

symbol

rule
with
with
with
with
with
with
with
with
with

($x
1 -
$x

inv
$x

inv
$x

inv
inv
inv

TYPE;
G;
G —+ G — G; notation - infix 10;

inv : G — G;

$y) - $z — $x - (3y - $z)
$x — $x
1 — $x
$x - $x — 1
inv $x — 1
$x - ($x - $y) — 8y
(inv $x - $y) — $y
1 —1
(inv $x) — $x
($x - $y) — inv $y - inv $x;

Rewrite engine implementation

The new rewriting engine of Dedukti
Gabriel Hondet and Frédéric Blanqui, FSCD 2020

extension of Luc Maranget’s decision trees for OCaml
to higher-order and non-linear patterns

http://dx.doi.org/10.4230/LIPIcs.FSCD.2020.35

Queries and assertions

print id ;

type term ;

compute term ;

(assert | assertnot) id* F term (: |E) term ;

print N; // constructors and induction principle
print +; // type and rules

type X;
compute 2 X 5;

assert 0 : N;
assertnot 0 : N — N;

assert x y zF x +y X z=x+ (y X z);
assertnot x y z F x + y X z = (x +y) X z;

How to use Lambdapi to check proofs?

By reducing proof-checking to type-checking:

// type of propositions
symbol Prop : TYPE;
// constructors of Prop (connectives, quantifiers)

// interpretation of propostitions as types
// (Curry-Howard isomorphism)
symbol Prf : Prop — TYPE;

// rules defining Prf

Proving P:Prop now reduces to finding a term of type Prf(P)

Stating an axiom vs Proving a theorem

Stating an axiom: symbol declaration

symbol O_is_neutral_for_+ x : Prf (0 + x = x);
// mo definition given now
// one can still be given later with a rule

Proving a theorem: symbol definition

opaque symbol O_is_neutral_for_+ x : Prf (0 + x = x) =
// generates the typing goal Prf (0 + z = x)
// a proof must be given now
begin
// proof script
end;

Goals and proofs

symbol declarations/definitions may generate:

> typing goals ‘xl:Al,...,xn:Anl— ?:B‘
we have to find a term 7 of type B assuming x1 : A1,...,Xn : Ap

> unification goals X1 A1 xn t Ap bt =
we have to prove that t =g u assuming xi : A1,..., %, 1 Ap

these goals can be solved by writing proof 's:

proof ::= (proof_step ;)*
proof_step ::= tactic ({ proof })*

> a proofis a ;-separated sequence of proof_step 's

» a proof_step is a tactic followed by as many proof 's enclosed in
curly braces as the number of goals generated by the tactic

Example of proof

https://raw.githubusercontent.com/Deducteam/lambdapi/master/tests/0K/tutorial.lp

opaque symbol O_is_neutral_for_+ x : Prf(0 + x = x) =
begin
induction
{simplify; reflexivity}
{assume x h; simplify; rewrite h; reflexivity}l}
end;

https://raw.githubusercontent.com/Deducteam/lambdapi/master/tests/OK/tutorial.lp

VYV VY VYV VYV VVYYVYYVYY

Tactics

solve for unification goals, applied automatically

simplify Ud]

refine term

assume id ™"

generalize id

apply term

induction

have id : term

reflexivity

symmetry

revrite [right] [pattern] term

why3

like Coq SSReflect

call external provers

Using Lambdapi as logical framework

Lambdapi does not come with a pre-defined logic
One has to define its own axioms and deduction rules:

A modular construction of type theories
Frédéric Blanqui, Gilles Dowek, Emilie Grienenberger, Gabriel
Hondet, Frangois Thiré, FSCD 2021 and LMCS 19(1), 2023

Definiton of a A[1/R theory U whose sub-theories correspond to
many known logic systems from first-order logic, to higher-order
logic and the calculus of constructions

Repository of logics defined in Lambdapi: TFF, U, PTS, etc.

http://doi.org/10.46298/LMCS-19(1:12)2023
https://github.com/Deducteam/lambdapi-logics/

The modular A/R theory U and its sub-theories
38 symbols, 28 rules, 13 sub-theories

Prfc? :>C7 /\C7 VC7VC, 3C

0

succ
pred
positive

Tﬁ:: —L7 =, Ay V, =

Beyond U: type systems with universe polymorphism

Some systems like Agda, Coq or Lean use an infinite hierarchy of
universes (= inaccessible cardinals in set theory)

Predicative universe levels are expressed in the max-suc algebra
with the symbols 0, successor and max interpreted in N

This can be also be handled in Lambdapi:

Encoding type universes without using matching modulo AC
FSCD 2022, using a specific ordering for AC-canonical forms

http://10.4230/LIPIcs.FSCD.2022.24

Outline

How to check the properties of a Al1/R theory?

Required properties

TC | decidability of the typing relation

SN | termination of — g from typable terms
SR | preservation of typing by — 3

SRy | preservation of typing by —x

LCR | local confluence of —gx on arbitrary terms
CR | confluence of — g from typable terms

What are the dependencies between those properties ?

For more details, see the slides and video of my talk at IWC 2020!

https://blanqui.gitlabpages.inria.fr/talks/iwc20.pdf
https://www.youtube.com/watch?v=Xu6xkgxy9x0&t=45s

Dependencies between properties

FSCD'19

PhD Genestier !
2020 v

FSCD'20

(o

- -+ for dependency wrt a strict subset of R

FSCD’19: Dependency Pairs in Dependent Type Theory Modulo
FSCD'20: Type Safety of Rewrite Rules in Dependent Types

http://dx.doi.org/10.4230/LIPIcs.FSCD.2019.9
https://hal.inria.fr/tel-03167579
https://hal.inria.fr/tel-03167579
http://dx.doi.org/10.4230/LIPIcs.FSCD.2020.13

Which tools can be used to check confluence
automatically?

Lambdapi can export user-defined rewrite rules to the HRS format
used in the confluence competition but, in this format:

— terms must be simply-typed
— rewriting is modulo 8n

— rewrite rules must be of base type

We therefore need to encode AlN/R-terms into the following HRS
signature for untyped A-calculus:

— A:t—t—t for application
—L:t—(t—t)—tfor

- P:t—(t—t)—tforn

— A(L(x),y) = xy for S-reduction

Available tools: CSI"ho (not developed anymore), SOL

http://project-coco.uibk.ac.at/problems/hrs.php
http://cl-informatik.uibk.ac.at/software/csi/ho/
http://solweb.mydns.jp/

Which tools can be used to check termination
automatically?

> Lambdapi can export user-defined rewrite rules to the XTC
format used in the termination competition but:

— XTC does not support dependent types
— the termination of R(US) on simply-typed terms may not imply the
termination of R U 8 on well-typed A\[1/R terms

» SizeChangeTool (Genestier, 2020) accepts input problems in the
Dedukti format and in an extension of the XTC format allowing
dependent types but:

— requires local confluence (LCR)

https://raw.githubusercontent.com/TermCOMP/TPDB/master/xml/xtc.xsd
https://github.com/Deducteam/SizeChangeTool

How to check local confluence incrementally?

To provide a useful feedback to users,
Lambdapi checks LCR each time a set of rules is added

Problem: assuming that R is LCR,
what do we need to do to check that RU S is LCR too?

How to check local confluence incrementally?

A system R is LCR if every critical pair of R is joinable

The set of critical pairs of R is CP(R) = CP*(R, R) where:
> CP*(R,S)=U{cP*(l > r,g—d)|I—>reR,g—deS}
> CP*(l —>r,g—d)=U{CP(l = r,p,g — d) | p€ FPos(I)}
> CP(I = r,p,g = d) = {(ro, [d]p0) | 0 = mgu(l|p, &)}

So we have:
|CP(RUS) = CP(R)U CP*(R,S)U CP*(S,RUS)|

Remarks:
» S is usually small wrt R
» CP(R) does not need to be computed and checked again

» Theset {(/,r,p,!|p) || = r € R,p € FPos(l)} can be
computed and recorded once to later check CP*(R, S) quickly

How to check subject reduction automatically?

SR(I<r): |VT,o,A, ThHlo:A = Tkro:A

P> compute the equations £ that must be satisfied for having /: X
» simplify £ using confluence and injectivity hints

P> turn £ into a convergent system S using Knuth-Bendix

» check that r : X holds in /(R + S)

For more details, see my slides and video at FSCD'20!

https://blanqui.gitlabpages.inria.fr/talks/fscd20.pdf
https://www.youtube.com/watch?v=F9E4WFiCLQ4

Conclusion

Lambdapi is a recent system offering unique features

Remarks and contributions are very welcome!

https://github.com/Deducteam/lambdapi/

https://github.com/Deducteam/lambdapi/

	What is the -calculus modulo rewriting?
	How to use Lambdapi to rewrite terms and build proofs?
	How to check the properties of a /R theory?

