https://github.com/Deducteam/lambdapi/

Lambdapi,

a proof assistant featuring rewriting

Frédéric Blanqui

(URLs and purple texts are clickable)

Lambdapi contributors

Work started in 2017 with various contributors over the years:

Alessio Coltellacci (2023-), **Gabriel Hondet** (2019-2022), Ashish Kumar Barnawal (2020-2021), Emilio Gallego (2018-2021), Aurélien Castre (2021), Yann Leray (2021), Diego Riverio (2020), Amélie Ledein (2020), François Lefoulon (2020), Rehan Malak (2019-2020), Yacine El Haddad (2019), Guillaume Genestier (2019), Houda Mouzoun (2019), Aristomenis-Dionysios Papadopoulos (2019), Franck Slama (2019), Jui-Hsuan Wu (2019), Christophe Raffalli (2017-2018), **Rodolphe Lepigre** (2017-2020)

► a proof assistant

► a proof assistant

software to build and check formal proofs (interactively)

 a logical framework one can define its own logic

a proof assistant

- a logical framework one can define its own logic
- ► based on the $\lambda\Pi$ -calculus modulo rewriting
 - functions are first-class expressions
 - expressions must be well-typed
 - allows dependent types, e.g. array(n)
 - both functions and types can be defined by rewrite rules

a proof assistant

- a logical framework one can define its own logic
- ► based on the $\lambda\Pi$ -calculus modulo rewriting
 - functions are first-class expressions
 - expressions must be well-typed
 - allows dependent types, e.g. array(n)
 - both functions and types can be defined by rewrite rules
- providing tools to check important properties
 - local confluence
 - subject reduction, aka preservation of typing by rewiting

a proof assistant

- a logical framework one can define its own logic
- ► based on the $\lambda\Pi$ -calculus modulo rewriting
 - functions are first-class expressions
 - expressions must be well-typed
 - allows dependent types, e.g. array(n)
 - both functions and types can be defined by rewrite rules
- providing tools to check important properties
 - local confluence
 - subject reduction, aka preservation of typing by rewiting
- ▶ and import/export other formats
 - XTC (termination checkers)
 - HRS (confluence checkers)
 - dk (Dedukti)

Outline

What is the $\lambda \Pi$ -calculus modulo rewriting?

How to use Lambdapi to rewrite terms and build proofs?

How to check the properties of a $\lambda\Pi/\mathcal{R}$ theory?

 $\lambda \Pi / \mathcal{R} =$ simply-typed λ -calculus $+\Pi$ dependent types, e.g. array(n)identification of types modulo rewrites rules $I \hookrightarrow r$ $+ \mathcal{R}$ terms t, u =sort of types TYPE f global constant local variable х tи application $\lambda x : t, u$ abstraction $\Pi x : t, u$ dependent product $t \rightarrow u$ abbreviation for $\Pi x : t, u$ when $x \notin u$

theory =Σ sequence of type declarations for global constants $+ \mathcal{R}$ set of rewrite rules $I \hookrightarrow r$ including rules on types! typing $= \ldots +$ $\Gamma, x : A \vdash t : B \quad \Gamma \vdash \Pi x : A, B : TYPE$ Γ: types of $\Gamma \vdash \lambda x : A, t : \Pi x : A, B$ local variables $\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A$ $\Gamma \vdash tu : B\{x \mapsto u\}$ $\Gamma \vdash t : A \quad A \equiv_{\beta \mathcal{R}} B$ $\equiv_{\beta R}$: equational theory $\Gamma \vdash t \cdot B$ generated by β and \mathcal{R}

concat : Πp : \mathbb{N} , array $p \to \Pi q$: \mathbb{N} , array $q \to \operatorname{array}(p+q)$ concat 2 a 3 b : $\operatorname{array}(2+3) \equiv_{\beta \mathcal{R}} \operatorname{array}(5)$

Hierarchy of terms in $\lambda \Pi / \mathcal{R}$

there is a priori no distinction between terms and types yet typing rules induce the following hierarchy on terms:

object	t :	type-family	<i>A</i> :	type-arity K
0	:	\mathbb{N}	:	TYPE
S	:	$\mathbb{N}\to\mathbb{N}$:	TYPE
	:	array	:	$\mathbb{N} o \mathtt{TYPE}$
empty	:	array 0	:	TYPE

class	grammar
type-arities K	$TYPE \mid \Pi x : \mathcal{A}, \mathcal{K}$
type-families A	$X \mid At \mid \Pi x : A, A \mid \lambda x : A, A$
objects <i>t</i>	$x \mid tt \mid \lambda x : A, t$

Properties of the $\lambda \Pi$ -calculus modulo rewriting

$\lambda\Pi/\mathcal{R}$ enjoys all the properties of $\lambda\Pi$:

- unicity of types modulo $\equiv_{\beta \mathcal{R}}$
- decidability of $\equiv_{\beta \mathcal{R}}$ and type-checking

assuming that $\hookrightarrow_{\beta \mathcal{R}}$:

- ▶ terminates: there is no infinite $\hookrightarrow_{\beta \mathcal{R}}$ sequences
- ▶ is confluent: the order of $\hookrightarrow_{\beta R}$ steps does not matter
- ▶ \mathcal{R} preserves typing: if $I\theta$: A and $I \hookrightarrow r \in \mathcal{R}$ then $r\theta$: A

All these properties are undecidable

Fortunately, we have theorems and tools for checking those properties in some cases (see later)

Outline

What is the $\lambda \Pi$ -calculus modulo rewriting?

How to use Lambdapi to rewrite terms and build proofs?

How to check the properties of a $\lambda \Pi / \mathcal{R}$ theory?

Where to find Lambdapi?

Website: https://github.com/Deducteam/lambdapi Libraries: https://github.com/Deducteam/opam-lambdapi-repository User manual: https://lambdapi.readthedocs.io/

Docs » Lambdapi User Manual

C Edit on G

Lambdapi User Manual

Lambdapi is a proof assistant for the $\lambda\Pi$ -calculus modulo rewriting. See What is Lambdapi? for more details.

Lambdapi files must end with <u>.1p</u>. But Lambdapi can also read Dedukti files ending with <u>.d</u> convert them to Lambdapi files (see Compatibility with Dedukti).

Installation instructions - Frequently Asked Questions - Issue tracker

Learn Lambdapi in 15 minutes

Examples of developments made with Lambdapi:

- Some logic definitions
- · Library on natural numbers, integers and polymorphic lists
- Example of inductive-recursive type definition
- Example of inductive-inductive type definition

How to use Lambdapi?

• Batch mode:

lambdapi check file.lp

- Interactive mode through an editor using a LSP server:
- **Emacs** (package available on MELPA)
- VSCode (package available on VSCode Marketplace)

shortcuts: https://lambdapi.readthedocs.io/en/latest/emacs.html

VSCode interface

shortcuts: https://lambdapi.readthedocs.io/en/latest/vscode.html

Lambdapi syntax

file extension: .lp

BNF grammar:

https://raw.githubusercontent.com/Deducteam/lambdapi/master/doc/lambdapi.bnf

comments: /* ... /* ... */ ... */ or // ...

identifiers: UTF16 characters and {| arbitrary string |}

commands for defining a $\lambda \Pi / \mathcal{R}$ theory:

- symbol for declaring/defining a symbol
- rule for adding a (set of) rewrite rules

Syntax of terms

TYPE $(id.)^*id$ $term term \dots term$ $\lambda id [: term]$, term $\sqcap id [: term]$, term $term \rightarrow term$ sort for types variable or constant application abstraction dependent product non-dependent product

unknown term

let id [: term] := term in term
(term)

Command for declaring/defining a symbol

 $modifier^* \text{ symbol } id \ param^* [: term] [:= term] [begin \ proof end] ;$

param = id | _ | (id ⁺ : term) | [id ⁺ : term] implicit parameters

symbol N : TYPE; symbol 0 : N; symbol s : $N \rightarrow N$; symbol + : $N \rightarrow N \rightarrow N$; notation + infix right 10; symbol \times : $N \rightarrow N \rightarrow N$; notation \times infix right 20;

Symbol modifiers

- constant: not definable
- opaque: never unfolded
- associative
- commutative
- private: not exported
- protected: exported but usable in rule left-hand sides only
- sequential: reduction strategy
- injective: unification hint

Handling of C/AC symbols in Lambdapi

When a symbol is declared C/AC, Lambdapi implicitly put terms in some canonical form wrt C/AC

On the implementation of construction functions for non-free concrete data types, ESOP 2007, with Thérèse Hardin, Pierre Weis

This is sufficient to handle simple functions without using matching modulo AC

Command for adding rewrite rules

rule term \hookrightarrow term (with term \hookrightarrow term)*;

pattern variables must be prefixed by \$:

rule $x + 0 \hookrightarrow x$ with $x + s \ y \hookrightarrow s \ (x + y);$

Lambdapi tries to automatically check:

- local confluence (AC symbols/HO patterns not handled yet)
- preservation of typing (aka subject reduction)

Rules accepted by Lambdapi

overlapping rules

rule $x + 0 \hookrightarrow x$ with $x + s \ y \hookrightarrow s \ (x + y)$ with $0 + x \hookrightarrow x$ with $s \ x + y \hookrightarrow s \ (x + y);$

matching on defined symbols

rule $($x + $y) + $z \hookrightarrow $x + ($y + $z);$

non-linear patterns

rule $x - x \hookrightarrow 0$;

higher-order patterns

symbol R:TYPE; symbol 0:R; symbol sin:R \rightarrow R; symbol cos:R \rightarrow R; symbol D:(R \rightarrow R) \rightarrow (R \rightarrow R); rule D (λ x, sin \$F.[x]) $\leftrightarrow \lambda$ x, D \$F.[x] \times cos \$F.[x]; rule D (λ x, \$V.[]) $\hookrightarrow \lambda$ x, 0;

Example: decision procedure for group theory

```
symbol G : TYPE;
symbol 1 : G;
symbol \cdot : G \rightarrow G \rightarrow G; notation \cdot infix 10;
symbol inv : G \rightarrow G;
rule (\$x \cdot \$y) \cdot \$z \hookrightarrow \$x \cdot (\$y \cdot \$z)
with 1 \cdot $x \hookrightarrow $x
with x \cdot 1 \hookrightarrow x
with inv x \cdot x \hookrightarrow 1
with x \cdot inv x \hookrightarrow 1
with inv x \cdot (x \cdot y) \hookrightarrow y
with x \cdot (inv x \cdot y) \hookrightarrow y
with inv 1 \hookrightarrow 1
with inv (inv x) \hookrightarrow x
with inv (\$x \cdot \$y) \hookrightarrow inv \$y \cdot inv \$x;
```

Rewrite engine implementation

The new rewriting engine of Dedukti Gabriel Hondet and Frédéric Blanqui, FSCD 2020

extension of Luc Maranget's decision trees for OCaml to higher-order and non-linear patterns

Queries and assertions

```
print id ;
type term;
compute term ;
(assert | assertnot) id * \vdash term (: \equiv) term ;
print N; // constructors and induction principle
print +; // type and rules
type ×;
compute 2 \times 5;
assert 0 : N;
assertnot 0 : N \rightarrow N;
assert x y z \vdash x + y \times z \equiv x + (y \times z);
assertnot x y z \vdash x + y \times z \equiv (x + y) \times z;
```

How to use Lambdapi to check proofs?

By reducing proof-checking to type-checking:

```
// type of propositions
symbol Prop : TYPE;
... // constructors of Prop (connectives, quantifiers)
// interpretation of propositions as types
// (Curry-Howard isomorphism)
symbol Prf : Prop → TYPE;
... // rules defining Prf
```

Proving P:Prop now reduces to finding a term of type Prf(P)

Stating an axiom vs Proving a theorem

Stating an axiom: symbol declaration

```
symbol 0_is_neutral_for_+ x : Prf (0 + x = x);
// no definition given now
// one can still be given later with a rule
```

Proving a theorem: symbol definition

```
opaque symbol 0_is_neutral_for_+ x : Prf (0 + x = x) :=
// generates the typing goal Prf (0 + x = x)
// a proof must be given now
begin
    ... // proof script
end;
```

Goals and proofs

symbol declarations/definitions may generate:

► typing goals $x_1 : A_1, \ldots, x_n : A_n \vdash ? : B$

we have to find a term ? of type B assuming $x_1 : A_1, \ldots, x_n : A_n$

unification goals

$$x_1:A_1,\ldots,x_n:A_n\vdash t\equiv u$$

we have to prove that $t \equiv_{\beta R} u$ assuming $x_1 : A_1, \ldots, x_n : A_n$

these goals can be solved by writing proof 's:

- a proof is a ;-separated sequence of proof_step 's
- a proof_step is a tactic followed by as many proof 's enclosed in curly braces as the number of goals generated by the tactic

Example of proof

https://raw.githubusercontent.com/Deducteam/lambdapi/master/tests/OK/tutorial.lp

```
opaque symbol 0_is_neutral_for_+ x : Prf(0 + x = x) :=
begin
    induction
    {simplify; reflexivity}
    {assume x h; simplify; rewrite h; reflexivity}
end;
```

Tactics

solve simplify [id] \blacktriangleright assume id⁺

- refine term
- generalize id
- apply term
- induction
- ▶ have id : term
- reflexivity
- symmetry
- rewrite [right] [pattern] term

why3

like Cog SSReflect call external provers

for unification goals, applied automatically

Using Lambdapi as logical framework

Lambdapi does not come with a pre-defined logic One has to define its own axioms and deduction rules:

A modular construction of type theories Frédéric Blanqui, Gilles Dowek, Emilie Grienenberger, Gabriel Hondet, François Thiré, **FSCD 2021** and **LMCS 19(1), 2023**

Definiton of a $\lambda \Pi / \mathcal{R}$ theory U whose sub-theories correspond to many known logic systems from first-order logic, to higher-order logic and the calculus of constructions

Repository of logics defined in Lambdapi: TFF, U, PTS, etc.

The modular $\lambda \Pi / \mathcal{R}$ theory U and its sub-theories

38 symbols, 28 rules, 13 sub-theories

Some systems like Agda, Coq or Lean use an infinite hierarchy of universes (= inaccessible cardinals in set theory)

Predicative universe levels are expressed in the max-suc algebra with the symbols 0, successor and max interpreted in $\mathbb N$

This can be also be handled in Lambdapi:

Encoding type universes without using matching modulo AC FSCD 2022, using a specific ordering for AC-canonical forms

Outline

What is the $\lambda \Pi$ -calculus modulo rewriting?

How to use Lambdapi to rewrite terms and build proofs?

How to check the properties of a $\lambda \Pi / \mathcal{R}$ theory?

Required properties

TC	decidability of the typing relation
SN	termination of $ ightarrow_{eta \mathcal{R}}$ from typable terms
SR_{β}	preservation of typing by $ ightarrow_{eta}$
$SR_\mathcal{R}$	preservation of typing by $ ightarrow_{\mathcal{R}}$
LCR	local confluence of $\rightarrow_{eta \mathcal{R}}$ on arbitrary terms
CR	confluence of $\rightarrow_{eta \mathcal{R}}$ from typable terms

What are the dependencies between those properties ?

For more details, see the slides and video of my talk at IWC 2020!

Dependencies between properties

---- for dependency wrt a strict subset of ${\mathcal R}$

FSCD'19: Dependency Pairs in Dependent Type Theory Modulo FSCD'20: Type Safety of Rewrite Rules in Dependent Types

Which tools can be used to check confluence automatically?

Lambdapi can export user-defined rewrite rules to the HRS format used in the confluence competition but, in this format:

- terms must be simply-typed
- rewriting is modulo $\beta\eta$
- rewrite rules must be of base type

We therefore need to encode $\lambda \Pi / R$ -terms into the following HRS signature for untyped λ -calculus:

- -A:t
 ightarrow t
 ightarrow t for application
- L:t
 ightarrow (t
 ightarrow t)
 ightarrow t for λ
- P:t
 ightarrow (t
 ightarrow t)
 ightarrow t for П
- $A(L(x), y) \hookrightarrow x y$ for β -reduction

Available tools: CSI^{ho} (not developed anymore), SOL

Which tools can be used to check termination automatically?

- Lambdapi can export user-defined rewrite rules to the XTC format used in the termination competition but:
 - XTC does not support dependent types
 - the termination of $\mathcal{R}(\cup\beta)$ on simply-typed terms may not imply the termination of $\mathcal{R} \cup \beta$ on well-typed $\lambda \Pi / \mathcal{R}$ terms
- SizeChangeTool (Genestier, 2020) accepts input problems in the Dedukti format and in an extension of the XTC format allowing dependent types but:
 - requires local confluence (LCR)

How to check local confluence incrementally?

To provide a useful feedback to users, Lambdapi checks LCR each time a set of rules is added

Problem: assuming that *R* is LCR, what do we need to do to check that $R \cup S$ is LCR too?

How to check local confluence incrementally?

A system R is LCR if every critical pair of R is joinable

The set of critical pairs of R is $CP(R) = CP^*(R, R)$ where:

►
$$CP^*(R,S) = \bigcup \{ CP^*(I \to r, g \to d) \mid I \to r \in R, g \to d \in S \}$$

►
$$CP^*(l \rightarrow r, g \rightarrow d) = \bigcup \{CP(l \rightarrow r, p, g \rightarrow d) \mid p \in FPos(l)\}$$

$$\blacktriangleright CP(l \rightarrow r, p, g \rightarrow d) = \{(r\sigma, l[d]_p\sigma) \mid \sigma = mgu(l|_p, g)\}$$

So we have:

$$CP(R \cup S) = CP(R) \cup CP^*(R,S) \cup CP^*(S,R \cup S)$$

Remarks:

- \blacktriangleright S is usually small wrt R
- CP(R) does not need to be computed and checked again
- The set {(*I*, *r*, *p*, *I*|_{*p*}) | *I* → *r* ∈ *R*, *p* ∈ *FPos*(*I*)} can be computed and recorded once to later check CP*(*R*, *S*) quickly

How to check subject reduction automatically?

$$SR(I \hookrightarrow r): \quad \forall \, \Gamma, \sigma, A, \quad \Gamma \vdash I\sigma : A \quad \Rightarrow \quad \Gamma \vdash r\sigma : A$$

- compute the equations \mathcal{E} that must be satisfied for having I: X
- simplify & using confluence and injectivity hints
- turn \mathcal{E} into a convergent system \mathcal{S} using Knuth-Bendix
- check that r: X holds in $\lambda \Pi / (\mathcal{R} + \mathcal{S})$

For more details, see my slides and video at FSCD'20!

Conclusion

Lambdapi is a recent system offering unique features Remarks and contributions are very welcome!

https://github.com/Deducteam/lambdapi/