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Lambdapi contributors

Work started in 2017 with various contributors over the years:

Alessio Coltellacci (2023-), Gabriel Hondet (2019-2022), Ashish
Kumar Barnawal (2020-2021), Emilio Gallego (2018-2021),
Aurélien Castre (2021), Yann Leray (2021), Diego Riverio (2020),
Amélie Ledein (2020), Francois Lefoulon (2020), Rehan Malak
(2019-2020), Yacine El Haddad (2019), Guillaume Genestier
(2019), Houda Mouzoun (2019), Aristomenis-Dionysios
Papadopoulos (2019), Franck Slama (2019), Jui-Hsuan Wu (2019),
Christophe Raffalli (2017-2018), Rodolphe Lepigre (2017-2020)
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» a proof assistant

software to build and check formal proofs (interactively)
P> a logical framework

one can define its own logic
» based on the All-calculus modulo rewriting

— functions are first-class expressions

— expressions must be well-typed

— allows dependent types, e.g. array(n)

— both functions and types can be defined by rewrite rules
P providing tools to check important properties

— local confluence

— subject reduction, aka preservation of typing by rewiting
» and import/export other formats

— XTC (termination checkers)

— HRS (confluence checkers)

— dk (Dedukti)

- v (Coq)
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What is the All-calculus modulo rewriting?

AM/R =
A

+ M

+R

terms t,u =
TYPE

f

X

tu

Ax:t,u
Mx:tu
t—u

simply-typed A-calculus
dependent types, e.g. array(n)
identification of types modulo rewrites rules | < r

sort of types

global constant

local variable

application

abstraction

dependent product

abbreviation for Mx : t,u when x ¢ u
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> sequence of type declarations for global constants
+R set of rewrite rules [ < r
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What is the All-calculus modulo rewriting?

theory =
> sequence of type declarations for global constants
+R set of rewrite rules [ < r
including rules on types!
typing = ...+
Mx:AFt:B THIMx:A B:TYPE [ types of

N=Xx:At:Mx:AB local variables

N=t:Mx:AB TFu:A
It tu: B{x+— u}

N=t:A A=z B =psR: equational theory
N-t:B generated by 5 and R

concat : Mp: N,array p — lNq : N,array g — array(p + q)
concat 2 a 3 b : array(2 + 3) =gr array(5)



Hierarchy of terms in A/R

there is a priori no distinction between terms and types
yet typing rules induce the following hierarchy on terms:

object t : type-family A : type-arity K
0 : N : TYPE
s : N— N : TYPE
: array : N — TYPE
empty array 0 : TYPE
class grammar
type-arities K TYPE | Mx : A K

type-families A | X | At |Tx: AJA| Ax: A A
objects t x| tt] Ax At




Properties of the All-calculus modulo rewriting

AM/R enjoys all the properties of AlN:
» unicity of types modulo =g
» decidability of =gr and type-checking

assuming that —gr:

> terminates: there is no infinite < g sequences

» is confluent: the order of <3 steps does not matter
> R preserves typing: if [0 : Aand | — r € R then rf : A

All these properties are undecidable

Fortunately, we have theorems and tools for checking those
properties in some cases (see later)
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How to use Lambdapi to rewrite terms and build proofs?



Where to find Lambdapi?

Website: nttps://github.com/Deducteam/lambdapi
Libraries: https://github.com/Deducteam/opam-lambdapi-repository
User manual: https://lambdapi.readthedocs.io/

# Lambdapi User Manual

Docs » Lambdapi User Manual © Edit on G

Lambdapi User Manual

Lambdapi is a proof assistant for the AlM-calculus modulo rewriting. See What is Lambdapi? fc
more details.

Lambdapi files must end with .1p . But Lambdapi can also read Dedukti files ending with .d

convert them to Lambdapi files (see Compatibility with Dedukti).
Installation instructions - Frequently Asked Questions - Issue tracker
Learn Lambdapi in 15 minutes

Examples of developments made with Lambdapi:

e Library on natural numbers, integers and polymorphic lists

* Example of inductive-recursive type definition

e Example of inductive-inductive type definition


https://github.com/Deducteam/lambdapi
https://github.com/Deducteam/opam-lambdapi-repository
https://lambdapi.readthedocs.io/

How to use Lambdapi?

e Batch mode:

lambdapi check file.lp

e Interactive mode through an editor using a LSP server:
— Emacs (package available on MELPA)
— VSCode (package available on VSCode Marketplace)



Emacs interface

= emacs@blangui-Latitude-5500
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window layout
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shortcuts: https://lambdapi.readthedocs.io/en/latest/emacs.html


https://lambdapi.readthedocs.io/en/latest/emacs.html

VSCode interface

tutorialIp - Visual Studio Code - -

twtoriallp x [u] oals

301 builtin "T* = 1
302 builtin "eq” =
303 builtin “refl*
Bl o0 builtin eqing

0 Prf ((ze2) =
checked part
1 N x0: Nat, Prf ((z @ x8) = x0) = Prf ((z e s x0) = s x0)

306 /* We now reprove our theorem on the inductive type Nat instead of N,
307 using the tactics *induction”, "reflexivity" and “rewrite*
308 To this end, we first need to define addition on Nat: */

310 Symbol e i Nat = Nat = Natj
311 potation ® infix right 10;
312 rule $x ez v $x

313 with $x e s $y w5 ($x @ $y);

S ———— £ goals

317 jnduction
318 | simplify; reflexivity; J

edition buffer .
window layout
- can be customized
rule ind_Nat $6 $1 $2 z (5] bash blangt

i messages

ynb

notatmn + mhx right associative 10.000000;
rule

"Ath f0 < Surc 81 « suce (49 + 1)

with 6+ $0 « $0;

Ln318,Col23 Spacesi2 UTFS LF Lambdapi G

shortcuts: https://lambdapi.readthedocs.io/en/latest/vscode.html


https://lambdapi.readthedocs.io/en/latest/vscode.html

Lambdapi syntax

file extension: .1p

BNF grammar:

https://raw.githubusercontent.com/Deducteam/lambdapi/master/doc/lambdapi.bnf
comments: /* ... /x... x/... x/0r // ...
identifiers: UTF16 characters and {| arbitrary string |}

commands for defining a Al1/R theory:
> symbol for declaring/defining a symbol

» rule for adding a (set of) rewrite rules


https://raw.githubusercontent.com/Deducteam/lambdapi/master/doc/lambdapi.bnf

Syntax of terms

TYPE sort for types
(id.)*id variable or constant
term term . ..term application
Mid[: term ], term abstraction
nid|[: term] , term dependent product
term — term non-dependent product

_ unknown term
let id [: term ] := term in term
( term)



Command for declaring/defining a symbol

modifier* symbol id param* [: term | [:= term | [begin proof end] ;

param=id| _| Cid* : term) | [id ™ : term]
implicit
parameters

symbol N : TYPE;

symbol 0 : N;

symbol s : N — N;

symbol + : N - N — N; notation + infix right 10;
symbol X : N - N — N; notation X infix right 20;
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Symbol modifiers

constant: not definable

opaque: never unfolded

associative

commutative

private: not exported

protected: exported but usable in rule left-hand sides only
sequential: reduction strategy

injective: unification hint



Handling of C/AC symbols in Lambdapi

When a symbol is declared C/AC, Lambdapi implicitly put terms in
some canonical form wrt C/AC

On the implementation of construction functions for non-free
concrete data types, ESOP 2007, with Thérése Hardin, Pierre Weis

This is sufficient to handle simple functions without using
matching modulo AC



Command for adding rewrite rules

rule term — term (with term — term )* ;

pattern variables must be prefixed by $:

rule $x + 0 — $x
with $x + s $y —> s ($x + $y);

Lambdapi tries to automatically check:
» local confluence (AC symbols/HO patterns not handled yet)
> preservation of typing (aka subject reduction)



Rules accepted by Lambdapi

overlapping rules

rule $x + 0 — $x
with $x + s $y — s ($x + $y)
with 0 + $x — $x
with s $x + $y — s ($x + $y);

matching on defined symbols

rule ($x + $y) + $z — $x + ($y + $2);
non-linear patterns

rule $x - $x — 0;

higher-order patterns

symbol R:TYPE; symbol O:R; symbol sin:R — R;
symbol cos:R — R; symbol D:(R — R) — (R — R);

rule D (A x, sin $F.[x]) —< X x, D $F.[x] X cos $F.[x];
rule D (A x, $V.[]) < X x, O;



Example: decision procedure for group theory

symbol G
symbol 1
symbol

symbol

rule
with
with
with
with
with
with
with
with
with

($x
1 -
$x

inv
$x

inv
$x

inv
inv
inv

TYPE;
G;
G —+ G — G; notation - infix 10;

inv : G — G;

$y) - $z — $x - (3y - $z)
$x — $x
1 — $x
$x - $x — 1
inv $x — 1
$x - ($x - $y) — 8y
(inv $x - $y) — $y
1 —1
(inv $x) — $x
($x - $y) — inv $y - inv $x;



Rewrite engine implementation

The new rewriting engine of Dedukti
Gabriel Hondet and Frédéric Blanqui, FSCD 2020

extension of Luc Maranget’s decision trees for OCaml
to higher-order and non-linear patterns


http://dx.doi.org/10.4230/LIPIcs.FSCD.2020.35

Queries and assertions

print id ;

type term ;

compute term ;

(assert | assertnot) id* F term (: |E) term ;

print N; // constructors and induction principle
print +; // type and rules

type X;
compute 2 X 5;

assert 0 : N;
assertnot 0 : N — N;

assert x y zF x +y X z=x+ (y X z);
assertnot x y z F x + y X z = (x +y) X z;



How to use Lambdapi to check proofs?

By reducing proof-checking to type-checking:

// type of propositions
symbol Prop : TYPE;
// constructors of Prop (connectives, quantifiers)

// interpretation of propostitions as types
// (Curry-Howard isomorphism)
symbol Prf : Prop — TYPE;

// rules defining Prf

Proving P:Prop now reduces to finding a term of type Prf(P)



Stating an axiom vs Proving a theorem

Stating an axiom: symbol declaration

symbol O_is_neutral_for_+ x : Prf (0 + x = x);
// mo definition given now
// one can still be given later with a rule

Proving a theorem: symbol definition

opaque symbol O_is_neutral_for_+ x : Prf (0 + x = x) =
// generates the typing goal Prf (0 + z = x)
// a proof must be given now
begin
// proof script
end;



Goals and proofs

symbol declarations/definitions may generate:

> typing goals ‘xl:Al,...,xn:Anl— ?:B‘
we have to find a term 7 of type B assuming x1 : A1,...,Xn : Ap

> unification goals X1 A1 xn t Ap bt =
we have to prove that t =g u assuming xi : A1,..., %, 1 Ap

these goals can be solved by writing proof 's:

proof ::= (proof_step ;)*
proof_step ::= tactic ({ proof })*

> a proofis a ;-separated sequence of proof_step 's

» a proof_step is a tactic followed by as many proof 's enclosed in
curly braces as the number of goals generated by the tactic



Example of proof

https://raw.githubusercontent.com/Deducteam/lambdapi/master/tests/0K/tutorial.lp

opaque symbol O_is_neutral_for_+ x : Prf(0 + x = x) =
begin
induction
{simplify; reflexivity}
{assume x h; simplify; rewrite h; reflexivity}l}
end;


https://raw.githubusercontent.com/Deducteam/lambdapi/master/tests/OK/tutorial.lp

VYV VY VYV VYV VVYYVYYVYY

Tactics

solve for unification goals, applied automatically

simplify Ud]

refine term

assume id ™"

generalize id

apply term

induction

have id : term

reflexivity

symmetry

revrite [right] [pattern] term

why3

like Coq SSReflect

call external provers



Using Lambdapi as logical framework

Lambdapi does not come with a pre-defined logic
One has to define its own axioms and deduction rules:

A modular construction of type theories
Frédéric Blanqui, Gilles Dowek, Emilie Grienenberger, Gabriel
Hondet, Frangois Thiré, FSCD 2021 and LMCS 19(1), 2023

Definiton of a A[1/R theory U whose sub-theories correspond to
many known logic systems from first-order logic, to higher-order
logic and the calculus of constructions

Repository of logics defined in Lambdapi: TFF, U, PTS, etc.


http://doi.org/10.46298/LMCS-19(1:12)2023
https://github.com/Deducteam/lambdapi-logics/

The modular A/R theory U and its sub-theories
38 symbols, 28 rules, 13 sub-theories

Prfc? :>C7 /\C7 VC7VC, 3C

0

succ
pred
positive

Tﬁ:: —L7 =, Ay V, =




Beyond U: type systems with universe polymorphism

Some systems like Agda, Coq or Lean use an infinite hierarchy of
universes (= inaccessible cardinals in set theory)

Predicative universe levels are expressed in the max-suc algebra
with the symbols 0, successor and max interpreted in N

This can be also be handled in Lambdapi:

Encoding type universes without using matching modulo AC
FSCD 2022, using a specific ordering for AC-canonical forms


http://10.4230/LIPIcs.FSCD.2022.24

Outline

How to check the properties of a Al1/R theory?



Required properties

TC | decidability of the typing relation

SN | termination of — g from typable terms
SR | preservation of typing by — 3

SRy | preservation of typing by —x

LCR | local confluence of —gx on arbitrary terms
CR | confluence of — g from typable terms

What are the dependencies between those properties ?

For more details, see the slides and video of my talk at IWC 2020!


https://blanqui.gitlabpages.inria.fr/talks/iwc20.pdf
https://www.youtube.com/watch?v=Xu6xkgxy9x0&t=45s

Dependencies between properties

FSCD'19

PhD Genestier !
2020 v

FSCD'20

(o

- -+ for dependency wrt a strict subset of R

FSCD’19: Dependency Pairs in Dependent Type Theory Modulo
FSCD'20: Type Safety of Rewrite Rules in Dependent Types


http://dx.doi.org/10.4230/LIPIcs.FSCD.2019.9
https://hal.inria.fr/tel-03167579
https://hal.inria.fr/tel-03167579
http://dx.doi.org/10.4230/LIPIcs.FSCD.2020.13

Which tools can be used to check confluence
automatically?

Lambdapi can export user-defined rewrite rules to the HRS format
used in the confluence competition but, in this format:

— terms must be simply-typed
— rewriting is modulo 8n

— rewrite rules must be of base type

We therefore need to encode AlN/R-terms into the following HRS
signature for untyped A-calculus:

— A:t—t—t for application
—L:t—(t—t)—tfor

- P:t—(t—t)—tforn

— A(L(x),y) = xy for S-reduction

Available tools: CSI"ho (not developed anymore), SOL


http://project-coco.uibk.ac.at/problems/hrs.php
http://cl-informatik.uibk.ac.at/software/csi/ho/
http://solweb.mydns.jp/

Which tools can be used to check termination
automatically?

> Lambdapi can export user-defined rewrite rules to the XTC
format used in the termination competition but:

— XTC does not support dependent types
— the termination of R(US) on simply-typed terms may not imply the
termination of R U 8 on well-typed A\[1/R terms

» SizeChangeTool (Genestier, 2020) accepts input problems in the
Dedukti format and in an extension of the XTC format allowing
dependent types but:

— requires local confluence (LCR)


https://raw.githubusercontent.com/TermCOMP/TPDB/master/xml/xtc.xsd
https://github.com/Deducteam/SizeChangeTool

How to check local confluence incrementally?

To provide a useful feedback to users,
Lambdapi checks LCR each time a set of rules is added

Problem: assuming that R is LCR,
what do we need to do to check that RU S is LCR too?



How to check local confluence incrementally?

A system R is LCR if every critical pair of R is joinable

The set of critical pairs of R is CP(R) = CP*(R, R) where:
> CP*(R,S)=U{cP*(l > r,g—d)|I—>reR,g—deS}
> CP*(l —>r,g—d)=U{CP(l = r,p,g — d) | p€ FPos(I)}
> CP(I = r,p,g = d) = {(ro, [d]p0) | 0 = mgu(l|p, &)}

So we have:
|CP(RUS) = CP(R)U CP*(R,S)U CP*(S,RUS)|

Remarks:
» S is usually small wrt R
» CP(R) does not need to be computed and checked again

» Theset {(/,r,p,!|p) || = r € R,p € FPos(l)} can be
computed and recorded once to later check CP*(R, S) quickly



How to check subject reduction automatically?

SR(I<r): |VT,o,A, ThHlo:A = Tkro:A

P> compute the equations £ that must be satisfied for having /: X
» simplify £ using confluence and injectivity hints

P> turn £ into a convergent system S using Knuth-Bendix

» check that r : X holds in /(R + S)

For more details, see my slides and video at FSCD'20!


https://blanqui.gitlabpages.inria.fr/talks/fscd20.pdf
https://www.youtube.com/watch?v=F9E4WFiCLQ4

Conclusion

Lambdapi is a recent system offering unique features

Remarks and contributions are very welcome!

https://github.com/Deducteam/lambdapi/
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