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What is Lambdapi?
▶ a proof assistant

software to build and check formal proofs (interactively)

▶ a logical framework
one can define its own logic

▶ based on the λΠ-calculus modulo rewriting
– functions are first-class expressions
– expressions must be well-typed
– allows dependent types, e.g. array(n)
– both functions and types can be defined by rewrite rules

▶ providing tools to check important properties
– local confluence
– subject reduction, aka preservation of typing by rewiting

▶ and import/export other formats
– XTC (termination checkers)
– HRS (confluence checkers)
– dk (Dedukti)
– v (Coq)
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How to use Lambdapi to rewrite terms and build proofs?

How to check the properties of a λΠ/R theory?



What is the λΠ-calculus modulo rewriting?

λΠ/R =
λ simply-typed λ-calculus

+ Π dependent types, e.g. array(n)
+ R identification of types modulo rewrites rules l ↪→ r

terms t, u =
TYPE sort of types
f global constant
x local variable
tu application
λx : t, u abstraction
Πx : t, u dependent product
t → u abbreviation for Πx : t, u when x /∈ u
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What is the λΠ-calculus modulo rewriting?

theory =
Σ sequence of type declarations for global constants

+ R set of rewrite rules l ↪→ r
including rules on types!

typing = . . . +

Γ, x : A ⊢ t : B Γ ⊢ Πx : A,B : TYPE

Γ ⊢ λx : A, t : Πx : A,B
Γ: types of

local variables

Γ ⊢ t : Πx : A,B Γ ⊢ u : A

Γ ⊢ tu : B{x 7→ u}

Γ ⊢ t : A A ≡βR B

Γ ⊢ t : B

≡βR: equational theory
generated by β and R

concat : Πp : N,array p → Πq : N,array q → array(p + q)
concat 2 a 3 b : array(2 + 3) ≡βR array(5)
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Hierarchy of terms in λΠ/R

there is a priori no distinction between terms and types
yet typing rules induce the following hierarchy on terms:

object t : type-family A : type-arity K

0 : N : TYPE

s : N → N : TYPE

: array : N → TYPE

empty : array 0 : TYPE

class grammar
type-arities K TYPE | Πx : A,K

type-families A X | At | Πx : A,A | λx : A,A

objects t x | tt | λx : A, t



Properties of the λΠ-calculus modulo rewriting

λΠ/R enjoys all the properties of λΠ:

▶ unicity of types modulo ≡βR
▶ decidability of ≡βR and type-checking

assuming that ↪→βR:

▶ terminates: there is no infinite ↪→βR sequences

▶ is confluent: the order of ↪→βR steps does not matter

▶ R preserves typing: if lθ : A and l ↪→ r ∈ R then rθ : A

All these properties are undecidable

Fortunately, we have theorems and tools for checking those
properties in some cases (see later)
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Where to find Lambdapi?
Website: https://github.com/Deducteam/lambdapi

Libraries: https://github.com/Deducteam/opam-lambdapi-repository

User manual: https://lambdapi.readthedocs.io/

https://github.com/Deducteam/lambdapi
https://github.com/Deducteam/opam-lambdapi-repository
https://lambdapi.readthedocs.io/


How to use Lambdapi?

• Batch mode:

lambdapi check file.lp

• Interactive mode through an editor using a LSP server:

– Emacs (package available on MELPA)

– VSCode (package available on VSCode Marketplace)



Emacs interface

edition buffer

goals

messages window layout
can be customized

checked part

shortcuts: https://lambdapi.readthedocs.io/en/latest/emacs.html

https://lambdapi.readthedocs.io/en/latest/emacs.html


VSCode interface

edition buffer

goals

messages

window layout
can be customized

checked part

shortcuts: https://lambdapi.readthedocs.io/en/latest/vscode.html

https://lambdapi.readthedocs.io/en/latest/vscode.html


Lambdapi syntax

file extension: .lp

BNF grammar:
https://raw.githubusercontent.com/Deducteam/lambdapi/master/doc/lambdapi.bnf

comments: /* ... /* ... */... */ or // ...

identifiers: UTF16 characters and {| arbitrary string |}

commands for defining a λΠ/R theory:

▶ symbol for declaring/defining a symbol

▶ rule for adding a (set of) rewrite rules

https://raw.githubusercontent.com/Deducteam/lambdapi/master/doc/lambdapi.bnf


Syntax of terms

TYPE sort for types
(id .)*id variable or constant
term term . . . term application
λ id [: term ] , term abstraction
Π id [: term ] , term dependent product
term → term non-dependent product

_ unknown term
let id [: term ] := term in term
( term )



Command for declaring/defining a symbol

modifier* symbol id param * [: term ] [:= term ] [begin proof end] ;

param = id | _ | ( id + : term ) | [ id + : term ]

implicit
parameters

symbol N : TYPE;

symbol 0 : N;

symbol s : N → N;

symbol + : N → N → N; notation + infix right 10;

symbol × : N → N → N; notation × infix right 20;



Symbol modifiers

▶ constant: not definable

▶ opaque: never unfolded

▶ associative

▶ commutative

▶ private: not exported

▶ protected: exported but usable in rule left-hand sides only

▶ sequential: reduction strategy

▶ injective: unification hint



Handling of C/AC symbols in Lambdapi

When a symbol is declared C/AC, Lambdapi implicitly put terms in
some canonical form wrt C/AC

On the implementation of construction functions for non-free
concrete data types, ESOP 2007, with Thérèse Hardin, Pierre Weis

This is sufficient to handle simple functions without using
matching modulo AC



Command for adding rewrite rules

rule term ↪→ term (with term ↪→ term )* ;

pattern variables must be prefixed by $:

rule $x + 0 ↪→ $x
with $x + s $y ↪→ s ($x + $y);

Lambdapi tries to automatically check:

▶ local confluence (AC symbols/HO patterns not handled yet)

▶ preservation of typing (aka subject reduction)



Rules accepted by Lambdapi

overlapping rules

rule $x + 0 ↪→ $x
with $x + s $y ↪→ s ($x + $y)
with 0 + $x ↪→ $x
with s $x + $y ↪→ s ($x + $y);

matching on defined symbols

rule ($x + $y) + $z ↪→ $x + ($y + $z);

non-linear patterns

rule $x - $x ↪→ 0;

higher-order patterns

symbol R:TYPE; symbol 0:R; symbol sin:R → R;

symbol cos:R → R; symbol D:(R → R) → (R → R);

rule D (λ x, sin $F.[x]) ↪→ λ x, D $F.[x] × cos $F.[x];
rule D (λ x, $V.[]) ↪→ λ x, 0;



Example: decision procedure for group theory

symbol G : TYPE;

symbol 1 : G;

symbol · : G → G → G; notation · infix 10;

symbol inv : G → G;

rule ($x · $y) · $z ↪→ $x · ($y · $z)
with 1 · $x ↪→ $x
with $x · 1 ↪→ $x
with inv $x · $x ↪→ 1

with $x · inv $x ↪→ 1

with inv $x · ($x · $y) ↪→ $y
with $x · (inv $x · $y) ↪→ $y
with inv 1 ↪→ 1

with inv (inv $x) ↪→ $x
with inv ($x · $y) ↪→ inv $y · inv $x;



Rewrite engine implementation

The new rewriting engine of Dedukti
Gabriel Hondet and Frédéric Blanqui, FSCD 2020

extension of Luc Maranget’s decision trees for OCaml
to higher-order and non-linear patterns

http://dx.doi.org/10.4230/LIPIcs.FSCD.2020.35


Queries and assertions

print id ;

type term ;

compute term ;

(assert | assertnot) id * ⊢ term (: |≡) term ;

print N; // constructors and induction principle

print +; // type and rules

type ×;
compute 2 × 5;

assert 0 : N;

assertnot 0 : N → N;

assert x y z ⊢ x + y × z ≡ x + (y × z);

assertnot x y z ⊢ x + y × z ≡ (x + y) × z;



How to use Lambdapi to check proofs?

By reducing proof-checking to type-checking:

// type of propositions

symbol Prop : TYPE;

... // constructors of Prop (connectives , quantifiers)

// interpretation of propositions as types

// (Curry -Howard isomorphism)

symbol Prf : Prop → TYPE;

... // rules defining Prf

Proving P:Prop now reduces to finding a term of type Prf(P)



Stating an axiom vs Proving a theorem

Stating an axiom: symbol declaration

symbol 0_is_neutral_for_+ x : Prf (0 + x = x);

// no definition given now

// one can still be given later with a rule

Proving a theorem: symbol definition

opaque symbol 0_is_neutral_for_+ x : Prf (0 + x = x) :=
// generates the typing goal Prf (0 + x = x)

// a proof must be given now

begin

... // proof script

end;



Goals and proofs

symbol declarations/definitions may generate:

▶ typing goals x1 : A1, . . . , xn : An ⊢ ? : B

we have to find a term ? of type B assuming x1 : A1, . . . , xn : An

▶ unification goals x1 : A1, . . . , xn : An ⊢ t ≡ u

we have to prove that t ≡βR u assuming x1 : A1, . . . , xn : An

these goals can be solved by writing proof ’s:

proof ::= (proof step ;)*
proof step ::= tactic ({ proof })*

▶ a proof is a ;-separated sequence of proof step ’s

▶ a proof step is a tactic followed by as many proof ’s enclosed in
curly braces as the number of goals generated by the tactic



Example of proof

https://raw.githubusercontent.com/Deducteam/lambdapi/master/tests/OK/tutorial.lp

opaque symbol 0_is_neutral_for_+ x : Prf(0 + x = x) :=
begin

induction

{simplify; reflexivity}

{assume x h; simplify; rewrite h; reflexivity}

end;

https://raw.githubusercontent.com/Deducteam/lambdapi/master/tests/OK/tutorial.lp


Tactics

▶ solve for unification goals, applied automatically

▶ simplify [id ]

▶ refine term

▶ assume id+

▶ generalize id

▶ apply term

▶ induction

▶ have id : term

▶ reflexivity

▶ symmetry

▶ rewrite [right] [pattern] term like Coq SSReflect

▶ why3 call external provers



Using Lambdapi as logical framework

Lambdapi does not come with a pre-defined logic
One has to define its own axioms and deduction rules:

A modular construction of type theories
Frédéric Blanqui, Gilles Dowek, Emilie Grienenberger, Gabriel
Hondet, François Thiré, FSCD 2021 and LMCS 19(1), 2023

Definiton of a λΠ/R theory U whose sub-theories correspond to
many known logic systems from first-order logic, to higher-order
logic and the calculus of constructions

Repository of logics defined in Lambdapi: TFF, U, PTS, etc.

http://doi.org/10.46298/LMCS-19(1:12)2023
https://github.com/Deducteam/lambdapi-logics/


The modular λΠ/R theory U and its sub-theories

38 symbols, 28 rules, 13 sub-theories



Beyond U: type systems with universe polymorphism

Some systems like Agda, Coq or Lean use an infinite hierarchy of
universes (= inaccessible cardinals in set theory)

Predicative universe levels are expressed in the max-suc algebra
with the symbols 0, successor and max interpreted in N

This can be also be handled in Lambdapi:

Encoding type universes without using matching modulo AC
FSCD 2022, using a specific ordering for AC-canonical forms

http://10.4230/LIPIcs.FSCD.2022.24
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Required properties

TC decidability of the typing relation

SN termination of →βR from typable terms

SRβ preservation of typing by →β

SRR preservation of typing by →R
LCR local confluence of →βR on arbitrary terms

CR confluence of →βR from typable terms

What are the dependencies between those properties ?

For more details, see the slides and video of my talk at IWC 2020!

https://blanqui.gitlabpages.inria.fr/talks/iwc20.pdf
https://www.youtube.com/watch?v=Xu6xkgxy9x0&t=45s


Dependencies between properties

SN TC SR

SRRLCR

CR SRβ

FSCD’19

PhD Genestier
2020

FSCD’20

−• −•→• for dependency wrt a strict subset of R

FSCD’19: Dependency Pairs in Dependent Type Theory Modulo
FSCD’20: Type Safety of Rewrite Rules in Dependent Types

http://dx.doi.org/10.4230/LIPIcs.FSCD.2019.9
https://hal.inria.fr/tel-03167579
https://hal.inria.fr/tel-03167579
http://dx.doi.org/10.4230/LIPIcs.FSCD.2020.13


Which tools can be used to check confluence
automatically?

Lambdapi can export user-defined rewrite rules to the HRS format
used in the confluence competition but, in this format:

– terms must be simply-typed

– rewriting is modulo βη

– rewrite rules must be of base type

We therefore need to encode λΠ/R-terms into the following HRS
signature for untyped λ-calculus:

– A : t → t → t for application

– L : t → (t → t) → t for λ

– P : t → (t → t) → t for Π

– A(L(x), y) ↪→ x y for β-reduction

Available tools: CSIˆho (not developed anymore), SOL

http://project-coco.uibk.ac.at/problems/hrs.php
http://cl-informatik.uibk.ac.at/software/csi/ho/
http://solweb.mydns.jp/


Which tools can be used to check termination
automatically?

▶ Lambdapi can export user-defined rewrite rules to the XTC
format used in the termination competition but:

– XTC does not support dependent types
– the termination of R(∪β) on simply-typed terms may not imply the

termination of R∪ β on well-typed λΠ/R terms

▶ SizeChangeTool (Genestier, 2020) accepts input problems in the
Dedukti format and in an extension of the XTC format allowing
dependent types but:

– requires local confluence (LCR)

https://raw.githubusercontent.com/TermCOMP/TPDB/master/xml/xtc.xsd
https://github.com/Deducteam/SizeChangeTool


How to check local confluence incrementally?

To provide a useful feedback to users,
Lambdapi checks LCR each time a set of rules is added

Problem: assuming that R is LCR,
what do we need to do to check that R ∪ S is LCR too?



How to check local confluence incrementally?

A system R is LCR if every critical pair of R is joinable

The set of critical pairs of R is CP(R) = CP∗(R,R) where:

▶ CP∗(R,S) =
⋃
{CP∗(l → r , g → d) | l → r ∈ R, g → d ∈ S}

▶ CP∗(l → r , g → d) =
⋃
{CP(l → r , p, g → d) | p ∈ FPos(l)}

▶ CP(l → r , p, g → d) = {(rσ, l [d ]pσ) | σ = mgu(l |p, g)}

So we have:

CP(R ∪ S) = CP(R) ∪ CP∗(R, S) ∪ CP∗(S ,R ∪ S)

Remarks:

▶ S is usually small wrt R

▶ CP(R) does not need to be computed and checked again

▶ The set {(l , r , p, l |p) | l → r ∈ R, p ∈ FPos(l)} can be
computed and recorded once to later check CP∗(R, S) quickly



How to check subject reduction automatically?

SR(l ↪→ r): ∀ Γ, σ,A, Γ ⊢ lσ : A ⇒ Γ ⊢ rσ : A

▶ compute the equations E that must be satisfied for having l : X

▶ simplify E using confluence and injectivity hints

▶ turn E into a convergent system S using Knuth-Bendix

▶ check that r : X holds in λΠ/(R+ S)

For more details, see my slides and video at FSCD’20!

https://blanqui.gitlabpages.inria.fr/talks/fscd20.pdf
https://www.youtube.com/watch?v=F9E4WFiCLQ4


Conclusion

Lambdapi is a recent system offering unique features

Remarks and contributions are very welcome!

https://github.com/Deducteam/lambdapi/

https://github.com/Deducteam/lambdapi/
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