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Course outline

Lecture 1. Introduction to proof systems interoperability;
introduction to the All-calculus modulo rewriting (A[1/R)
(part 1): A-calculus, dependent types

Lecture 2. Introduction to Al1/R (part 2): pure type systems,
rewriting; introduction to the Lambdapi proof assistant,
practical session on Lambdapi
install on your machine Opam (https://opam.ocaml.org)
and Lambdapi (https://github.com/Deducteam/lambdapi)

Lecture 3. Encoding logics in A[1/R: first-order logic,
polymorphism, higher-order logic, pure type systems, ...

Lecture 4. Properties of \[1/R: decidability of type-checking,
subject-reduction, confluence, termination, dependencies
between these properties


https://opam.ocaml.org
https://github.com/Deducteam/lambdapi
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Gilles Dowek (1966-2025)

This symposium, and especially this school, is dedicated to the
memory of Gilles Dowek who died last July at the age of 58 only,
and has been a very important contributor to the development of
logical frameworks, and especially the All-calculus modulo
rewriting and its implementation Dedukti.




Libraries of formal proofs today

Library Nb files | Nb objects™
Rocq Opam 35,000 1,200,000
Isabelle AFP 7,500 280,000
Lean Mathlib 4,200 210,000
Mizar Mathlib 1,400 77,000

HOL-Light 600 35,000
* type, definition, theorem, ...in 2023
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e Every system has basic libraries on integers, lists, ...

e Some definitions/theorems are available in one system only
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e Every system has basic libraries on integers, lists, ...

e Some definitions/theorems are available in one system only

= Can’t we translate a proof between two systems automatically?



Interest of proof systems interoperability

Avoid duplicating developments and losing time
Facilitate development of new proof systems
Increase reliability of formal proofs (cross-checking)
Facilitate validation by certification authorities
Relativize the choice of a system (school, industry)

Provide multi-system data to machine learning



Difficulties of interoperability

e Each system is based on different axioms and deduction rules

e |t is usually non trivial and sometimes impossible to translate a
proof from one system to the other (e.g. a proof using
impredicativity or proof irrelevance in a system not allowing
these features)
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A common language for proof systems?

Logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D(S) in D

Example: D = predicate calculus

allows one to represent S=geometry, S=arithmetic, S=set theory, ...

not well suited for computations and dependent types



A common language for proof systems?

Logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D(S) in D

Example: D = predicate calculus

allows one to represent S=geometry, S=arithmetic, S=set theory, ...

not well suited for computations and dependent types

Better: D = All-calculus modulo rewriting (Al1/R)

allows one to represent also:
5=HOL, S=Rocq, S=Agda, S=PVS, ...



How to translate a proof t € A in a proof u € B?

In a logical framework D:

system A D(A) D(B) system B
1. translate t € Ain t' € D(A)

3. translate v’ € D(B) inu e B
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OESORROSR

1. translate t € Ain t' € D(A)

2. identify the axioms and deduction rules of A used in t’
translate t' € D(A) in v’ € D(B) if possible

3. translate v’ € D(B) inu e B



How to translate a proof t € A in a proof u € B?

In a logical framework D:

system A system B

OESORROSR

1. translate t € Ain t' € D(A)

2. identify the axioms and deduction rules of A used in t’
translate t' € D(A) in v’ € D(B) if possible

3. translate v’ € D(B) inu e B

= represent in the same way functionalities common to A and B



The modular A/R theory U and its sub-theories
38 symbols, 28 rules, 13 sub-theories

Prfc? :>C7 /\C7 VC7VC, 3C
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Dedukti, an assembly language for proof systems

CubicaITT FoCalLiZe SMT solvers

cveh, veriT

HOL-Light .
Agda - Lean

Matita TSTP j«=—— Mizar

OpenTheory automated
provers
|Isabelle Vampire, E, ...

K

Lambdapi
ICS_PA‘"‘proj;:ect /

TLAPS — AtelierB

Lambdapi = Dedukti + implicit arguments/coercions, tactics, ...

https://github.com/Deducteam/Dedukti
https://github.com/Deducteam/lambdapi


https://github.com/Deducteam/Dedukti
https://github.com/Deducteam/lambdapi

Libraries currently available in Dedukti

System Libraries
HOL-Light all libraries
Matita Arith
Rocq Stdlib parts, GeoCoq
Isabelle HOL.Complex_Main
Agda Stdlib parts (£ 25%)
PVS Stdlib parts (statements only)
Lean Stdlib
TPTP E 69%, Vampire 83%




Examples of library translations

e Matita/Arith — OpenTheory, Rocq, PVS, Lean
https://logipedia.inria.fr

e Matita/Arith — Agda
https://github.com/Deducteam/matita_lib_in_agda

e HOL-Light — Rocq
https://github.com/Deducteam/coq-hol-light


https://logipedia.inria.fr
https://github.com/Deducteam/matita_lib_in_agda
https://github.com/Deducteam/coq-hol-light
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What is the All-calculus modulo rewriting ?

AM/R =
A simply-typed A-calculus
+ 11 dependent types, e.g. Arrayn

+ R identification of types modulo rewrites rules | < r



Outline

Lambda-calculus



What is \-calculus 7

introduced by Alonzo Church in 1932

the (untyped or pure) A-calculus is a general framework for
defining functions (or predicates)

initially thought as a possible foundation for logic
but turned out to be inconsistent

it however provided a foundation for computability theory
and functional programming !



What is \-calculus 7

only 3 constructions:

e variables x, y, ...
e application of a term t to another term u, written tu

e abstraction over a variable x in a term t, written Ax,t
example: the function mapping x to 2x + 1 is written

Ax, +(*2x)1

but, for the sake of readability, we may still use infix notations



a-equivalence

the names of abstracted variables are theoretically not significant:
Ax,+(*2x)1  denotes the same function as Ay, +(*2y)1
terms equivalent modulo valid renamings are said a-equivalent

in theory, one usually works modulo a-equivalence, that is, on
a-equivalence classes of terms (hence, one can always rename
some abstracted variables if it is more convenient)

= but, then, one has to be careful that functions and relations are
actually invariant by a-equivalencel!. ..

in practice, dealing with a-equivalence is not trivial

= this gave raise to a lot of research and tools (still nowadays)!



Example: the set of free variables

a variable is free if it is not abstracted

the set F'V(t) of free variables of a term t is defined as follows:
e FV(x) = {x}

e FV(tu) =FV(t)UFV(u)

o FV(\x,t) = FV(t) — {x}

one can check that F'V is invariant by a-equivalence:

if t =4 u then FV(t) = FV(u)



Substitution

a substitution is a finite map from variables to terms

o={(xt,t1), -, (xmta)}

the domain of a substitution ¢ is
dom(o) = {x € V| o(x) # x}

how to define the result of applying a substitution ¢ on a term t 7
e xo = o(x) if x € dom(o)

e xo = x if x ¢ dom(o)

e (tu)o = (to)(uo)

o (Ax,t)o = Ax, (to) ? example: (Ax, y){(y,x)} = Ax,x ?



Substitution

a substitution is a finite map from variables to terms

o={(x1,t1),...,(xn, tn)}
the domain of a substitution ¢ is
dom(o) = {x € V| o(x) # x}

how to define the result of applying a substitution ¢ on a term t 7
e xo = o(x) if x € dom(o)

e xo = x if x ¢ dom(o)

e (tu)o = (to)(uo)

o (Ax,t)o = Ax, (to) ? example: (Ax, y){(y,x)} = Ax,x ?

definition not invariant by a-equivalence | Ax,y =, Az, y



Substitution

in A-calculus, substitution is not trivial!

we must rename abstracted variables to avoid name clashes:
(Ax, t)o = Ay, (to’)

where o’ = o[py(ax,e U 1% ¥)}

and y ¢ FV(Ax, t) U {FV(z0) | z € dom(o|py(rx,t))}



Operational semantics: [-reduction

applying the term Ax, +(*2x)1 to 3 should return +(*23)1
this is the top S-rewrite relation:
(Ax, t)u =G t¢
3

the [-rewrite relation <3 is the closure by context of —:

t(—>%u t—=gu t—gu t—gu

t—=gu tv—guv vt=gvu AIx,t<=gAx,u

a term is in normal form if it cannot be reduced further



Properties of S-reduction in pure A-calculus

<3 is confluent or has the Church-Rosser property (CR):

if t =% uand t % v ’,Vta
then u g v » «
Yu Vv
i.e. there is w s.t. “« s
4 »
u<—>2wandv=—>gw =

this means that the order of reduction steps does not matter

and every term has at most one normal form



Properties of S-reduction in pure A-calculus

— 3 does not terminate:

(Ax, xx)(Ax, xx) =g (Ax, xx)(Ax, xx)
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A-calculus is Turing-complete/can encode any recursive function



Properties of S-reduction in pure A-calculus

— 3 does not terminate:
(Ax, xx)(Ax, xx) =g (Ax, xx)(Ax, xx)
every term t has a fixpoint Y; := (Ax, t(xx))(Ax, t(xx)):
Y: =g tYs

A-calculus is Turing-complete/can encode any recursive function

a natural number n can be encoded as
A A, Fx

where fOx = x and f™1x = f(f"x)



Outline

Simple types



On the origin of type theory

like in unrestricted set theory where every term is a set
in pure A\-calculus, every term is a function
= every term can be applied to another term, including itself!
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~> modern set theory



On the origin of type theory

like in unrestricted set theory where every term is a set
in pure A\-calculus, every term is a function
= every term can be applied to another term, including itself!

Russell’s paradox: with R:={x | x ¢ x} we have RER and R¢ R
A-calculus: with R := Ax, =(xx) = Y- we have RR —3 —(RR)

proposals to overcome this problem:

e restrict comprehension axiom to already defined sets
use {x € A| P} instead of {x | P}
~> modern set theory

e organize terms into a hierarchy

— natural numbers are of type ¢ and propositions of type o
— sets of natural numbers are of type + — o
— sets of sets of natural numbers are of type (¢« — 0) = o

~> modern type theory



Church simply-typed A-calculus (1940)

simple types:

ABES=X€EVy,|A—B

e X is a user-defined type variable/constant
e A — B is the type of functions from A to B

terms:

tu€T =x€EVop | A At | tu



Assigning types to terms

to assign a type to a term, we define a relation
p
FC (Vo 5 8)xT xS

where Vo, S is the set of finite maps from variables to types
(typing environments) giving the types of free variables

a term t is well-formed in T if there is A such that:

r-+t : A

7 S

types of free variables term type



Typing rules for objects

x:Ael
TEx:A

Mx:AkFt:B x¢dom(l)
N-=XMx:At:A—> B

lrFt:A—=B TFu:A
M~tu:B




Some properties of simply-typed \-terms

xx is not typable
a term has at most one type in a given typing environment

< g preserves typing/has the subject-reduction property (SRg):
ffr-t:Aandt =g u, thenT Fu: A

g terminates on well-typed terms (SN)
type-inference A, I - t : A7 is decidable

type-checking I - t : A? is decidable



Outline

Dependent types



Dependent types / All-calculus

a dependent type is a type that depends on terms
example: the type (Array n) of arrays of size n

first introduced by de Bruijn in the Automath system in the 60's

dependent types:

AB:=Xt...t,|Nx:AB

A — B is an abbreviation for Nx: A, B when x ¢ FV(B)



Example of objects with dependent types

concatenation function on arrays:
concat: [Mp:N,Array p — Nq :N, Array ¢ — Array(p + q)

concat2a3b: Array(2 + 3)



Typing rules for objects 7

with simple types with dependent types
(x,A)erl (x,A) el
M=x:A MN-=x:A
Mx:AFt:B x ¢ dom(IN) Mx:AFt:B x¢ dom(IN)
N Xx:At:A—B M- Xx:At:MNx:A B
l'Ft:A—=B Thu:A NEt:NMx:AB TFu:A
N-tu:B - tu: BY
r-t:A AlgA THA:TYPE
M=t A

the last rule allows one to identify the types

A= Array((An:N,n)3) and A’ = Array(3)



How to make sure that a dependent type is well-formed 7

definition of simply-typed terms:

1. we define types: A,B:=X €V, | A= B
all types are well-formed by definition

2. we define terms: t, u = x € Vopj | Ax: A, t | tu

3. we define well-formed terms with typing



How to make sure that a dependent type is well-formed 7

definition of simply-typed terms:

1. we define types: A,B:=X € V4, | A— B
all types are well-formed by definition

2. we define terms: t, u = x € Vopj | Ax: A, t | tu

3. we define well-formed terms with typing

problem with dependent types: types depend on terms
= not all types are well-formed

=- we need typing rules for dependent types too



What is a simple type ?

a simple type refines the notion of arity:
e it indicates the number of arguments

e but also the type of each argument

instead of saying + takes 2 arguments, we say +: N - N — N

instead of saying that 2 + 2 is well-formed, we say 2 +2: N



What is a simple type ?

a simple type refines the notion of arity:
e it indicates the number of arguments

e but also the type of each argument

instead of saying + takes 2 arguments, we say +: N - N — N

instead of saying that 2 + 2 is well-formed, we say 2 +2: N

2+ 2 : N also means that 2 4 2 is an expression of arity 0
types extend arities from function symbols to any expression

we can have partial applications: 2+ _: N = N



Arity and typing rules of simple types

we introduce a new constant TYPE for the arity of simple types

the fact that every simple type is well-formed can be represented
by the following typing rules:

=X : TYPE

'-A:TYPE [ F B:TYPE
-A— B:TYPE

example: N:TYPE + N — N: TYPE



Arity and typing rules of dependent types

the typing rules for simple types can be easily extended to
dependent types as follows:

NFA:TYPE [,x:AF B:TYPE
N=TIx:A, B : TYPE

but what is the arity of Array 7



Arity and typing rules of dependent types

the typing rules for simple types can be easily extended to
dependent types as follows:

NFA:TYPE [,x:AF B:TYPE
N=TIx:A, B : TYPE

but what is the arity of Array 7
Array is a function mapping natural numbers to types

its arity is N — TYPE



Intermediate summary

we now have 3 sorts of expressions:

e objects: 0, +, 24 2, etc.

o families, the arities of objects: N, N -+ N — N, Array 3,
Mp: N, Array p, etc.

e kinds, the arities of families: TYPE, N — TYPE,
Array 3 — TYPE, etc.

we have typing rules to make sure that an object is well-formed
we have typing rules to make sure that a family is well-formed

we have no typing rules to make sure that a kind is well-formed
yet a kind may contain families and objects



How to make sure that a kind is well-formed ?

to type families, we introduced the constant TYPE and typing rules
on families

to type kinds, we introduce a new constant KIND and the following
typing rules:

[+ TYPE : KIND

NA:TYPE [I,x:AF K :KIND
MFTx:A, K :KIND

example: N:TYPE - N — TYPE : KIND



Adding abstractions in families

finally, we can easily add abstractions in families like
An: N Arrayn
by adding the following rules:

Nx:AFB: K
M= Ax:AB:TMx:A K

rN-FA:K KlgK' TI'FK' :KIND
rM-A: K

the last rule allows one to identify the types
K = Array ((An: N, n)3) — TYPE and K’ = Array(3) — TYPE



Rules to make sure that a typing environment is
well-formed

[+ means that I is well-formed:

N A:TYPE x ¢ dom(IN) N K:XIND X ¢ dom(IN)

Tl

Mx:AF NMX:KE



All rules on one slide
(Harper, Honsell and Plotkin, 1993)

typing environments:

M= A:TYPE x ¢ dom(IN) M- K:KIND X ¢ dom(I)

[ Mx:AF rX:KFr
objects:
r= (x,A)er rt:A AlgA” THA :TYPE
lrEx: A r=t: A
Nx:AFt: B r-t:NMx:A B TFu:A
FEXx:At:MNx:AB e tu: BY

families (arities of objects):

r- (X,K)er I x:AkF B:TYPE
rEX:K I'ETNx: A, B:TYPE
MNx:AFB: K FrET:NMx:AK TFHu:A
Fr=Xx:AB:Mx: AK N=Tu: KY

rFA:K Klg K TFK' :KIND
r-A: K’

kinds (arities of families):

(e INx:AF K :KIND



