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AlM-calculus (Harper, Honsell and Plotkin, 1993)

typing environments:

N-A:TYPE x ¢ dom(I) M- K:KIND X ¢ dom(I')

[ Mx:AF X KF
objects:
r=- (x,A)er Fr-t:A AlgA THA :TYPE
lEx: A rt: A
MNx:AFt:B FrEt:Mx:AB TFu:A
F-Xx:At:MNx:AB - tu: BY
families (arities of objects):
r- (X,K)er I x:AkF B:TYPE
rEX:K I'ETNx: A, B:TYPE
Nx:AFB: K r-T7T:Mx:AK Tru:B
FrEXx:AB:Tx: A K M= Tu: KY
rNFA:K Klg K TEK :KIND
r-A:K’

kinds (arities of families):

(N I x:AF K :KIND
I = TYPE : KIND MFTx: A K:KIND




AlM-calculus (PTS presentation, Berardi, Terlouw, 1989)
s € S = {TYPE,KIND}

Nr-A:s x ¢ dom(I") N-= (x,A)er
= Mx:AF TEx:A

MNx:AFt:B Mx:AB:s N=t:MNMx:AB lFu:A

N=Ax:At:Mx: A B -tu:BY
M = A:TYPE Nx:AFB:s
[+ TYPE :KIND N=Mx:AB:s

MN-t: A Alg A rA:s
M-t: A




Pure Type Systems (PTS, Berardi, Terlouw, 1989)

s € S = {TYPEKIND}
N-A:s  x¢dom(IN N (x,A)er
= Mx: AR MTEx:A

MNx:AkFt:B MNx:AB:s F=t:MNx:AB FM-u:A

NM=-Ax:At:Nx:AB M-tu: BY
M+ F A:T¥PESs Mx:AFB:gs
[+ T¥PEs : KIND s, MN=Tix: A B:gs3
(51./52) EAQS2 ((51,52)753) G’PQS2 x S

N-t: A Alg A A :s
M-t: A




Pure Type Systems (PTS)

PTS's are a family of type systems parametrized by:
e aset S of sorts

e a relation A C S? giving the sort type of some sorts

I A
Frois (02)€

e a relation P C S? x S describing in what sorts live products
depending on the sorts of their arguments

lTFA:sy Tox:AFB:s

[ MNx A B s ((s1,52),85) € P

a PTS is functional if A and P are functional relations

in this case types are unique up to |g-equivalence:
iffFt:AandT=t: Bthen Alg B



Examples of (functional) PTS's
e simply-typed A-calculus (A7):
— & = {TYPE,KIND}
- A= {(TYPE,KIND)}
- P = {(({TYPE, TYPE), TYPE)}
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Examples of (functional) PTS's
e simply-typed A-calculus (A7):
- 8§ = {TYPE,KIND}
- A= {(TYPE,KIND)}
- P = {(({TYPE, TYPE), TYPE)}

e A\~ + type constructors (e.g. List : TYPE — TYPE):
- S = {TYPE,KIND}
- A= {(TYPE,KIND)}
— P = {(({TYPE, TYPE), TYPE), (({KIND, KIND), KIND)}

e All-calculus = A + dependent types (e.g. Array : N — TYPE):
— S = {TYPE,KIND}
- A = {(TYPE,KIND)}
— P = {(({TYPE, TYPE), TYPE), ((TYPE, KIND), KIND)}

e A\~ + polymorphic types (e.g. id : [MA: TYPE, A — A):
- 8§ = {TYPE,KIND}
- A = {(TYPE,KIND)}
- P = {(({TYPE, TYPE), TYPE), (({KIND, TYPE), TYPE)}

Remark: in all these examples, P(s1,5) = s



Barendregt's A-cube

feature PTS rule
simple types TYPE, TYPE
polymorphic types | KIND, TYPE
dependent types | TYPE,KIND
type constructors | KIND, KIND

@ polymorphic

type
constructors

adding dependent
types



Examples of PTS’s with infinitely many sorts

e Agda base type system:
- § = {Set;|i € N}
- A= {(Set;, Set,-+1)|i S N}
-P= {(({Setia Setj)a Setmax(i,j))“aj € N}

e Lean base type system:
- § = {Sort;|i € N}
- A= {(Sort;,Sort;;1)|i € N} (Sortg = Prop)
— P = {(({Sort;, Sort;), Sortmaxj)li,j € N}
U{(({Sort;,Sortg), Sorty)|i € N}

Rocq base type system is the same as Lean + subtyping:

B< B
Type; < Type; MNx:AB<TMx:ADB




Properties of the All-calculus

equivalence of types: if [=t:Aand '~t: B then Alg B
g terminates on well-typed terms (SN)

3 preserves typing (SRp)

type-inference A, I - t : A7 is decidable

type-checking I = t : A? is decidable



Signature in the All-calculus

a typing environment can be split in two parts:
1. a fixed part X representing global constants

2. a variable part I for local variables

in the following, we write
MFst:Aorsimplyl-t: A

instead of

Y It A



The need for more identifications

we have seen that the types
A= Array((An:N,n)3) and A = Array(3)

can be identified thanks to the typing rule

r-t:A AlgA THA:TYPE
M-t: A

but not the types

A= Array(2+3) and A = Array(5)



Outline

Rewriting



What is rewriting ?
introduced at the end of the 60's (Knuth)
a rewrite rule / < r is an equation / = r used from left-to-right

rewriting simply consists in repeatedly replacing a subterm /o by ro
(rewriting is Turing-complete)

it can be used to decide equational theories:

given a set £ of equations, =¢ is decidable
if there is a rewrite system R such that:

e <y terminates (SN)

e —p is confluent (CR)

o =R = =¢

where <5 is the closure by context and
substitution of R




AlN-calculus modulo rewriting (AM/R)

The AlM-calculus modulo rewriting (Al1/R) simply extends the
Al-calculus by identifying types modulo a set R of rewriting rules
on a signature X:

F-t: A Algr A THA ¢
Mt A

remark: if T~t: Athen A=KINDorT+-A:s



AlN-calculus modulo rewriting (AI/R)

The AlM-calculus modulo rewriting (Al1/R) simply extends the
Al-calculus by identifying types modulo a set R of rewriting rules
on a signature X:

F-t: A Algr A THA ¢
Mt A

remark: if T~t: Athen A=KINDorT+-A:s

therefore it is equivalent to use the more symmetric rule

FrEt:A THA:s Algr A TEHA S
M=t: A




What is a A\[1/R theory ?

a theory in the All-calculus modulo rewriting is given by:
e a signature

e a set R of rewrite rules on

such that:
e —3 U — terminates (SN)
e —3 U g is confluent (CR)

e every rule | < r preserves typing (SRr):
ifl-lo:AthenlT Fro: A
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Dedukti, an assembly language for proof systems

CubicaITT FoCalLiZe SMT solvers

cveh, veriT

HOL-Light .
Agda - Lean

Matita TSTP j«=—— Mizar

OpenTheory automated
provers
|Isabelle Vampire, E, ...

K

Lambdapi
ICS_PA‘"‘proj;:ect /

TLAPS — AtelierB

Lambdapi = Dedukti + implicit arguments/coercions, tactics, ...

https://github.com/Deducteam/Dedukti
https://github.com/Deducteam/lambdapi


https://github.com/Deducteam/Dedukti
https://github.com/Deducteam/lambdapi

Lambdapi

Lambdapi is an interactive proof assistant for \[1/R

e has its own syntax and file extension .1p

e can read and output .dk files

symbols can have implicit arguments

symbol declaration/definition generates typing/unification goals

goals can be solved by structured proof scripts (tactic trees)



Where to find Lambdapi?

Webpage: https://github.com/Deducteam/lambdapi

User manual: https://lambdapi.readthedocs.io/

Libraries:
https://github.com/Deducteam/opam-lambdapi-repository


https://github.com/Deducteam/lambdapi
https://lambdapi.readthedocs.io/
https://github.com/Deducteam/opam-lambdapi-repository

How to install Lambdapi?

Using Opam:

opam install lambdapi

Compilation from the sources:

git clone https://github.com/Deducteam/lambdapi.git
cd lambdapi

make

make install


https://opam.ocaml.org/

How to use Lambdapi?

Command line (batch mode):

lambdapi check file.lp

Through an editor (interactive mode):
e Emacs
e VSCode

Lambdapi automatically (re)compiles dependencies if necessary



How to install the Emacs interface?

3 possibilities:
1. Nothing to do when installing Lambdapi with opam
2. From Emacs using MELPA:

M-x package-install RET lambdapi-mode

3. From sources:

make install_emacs

+ add in ~/.emacs:
(load )



Emacs interface

. emacsobianguiaiude 3500
File Edit Options Buffers Tools Flymake Help

[ X [phoe e % 18| Q@ [@B)0
Foe

checked part

<—— edition buffer

«~—— goals

window layout

<« messages _
can be customized

shortcuts: https://lambdapi.readthedocs.io/en/latest/emacs.html


https://lambdapi.readthedocs.io/en/latest/emacs.html

How to install the VSCode interface?

From the VSCode Marketplace



VSCode interface

o

6 Prf((ze2) =2)

checked part &

1 N x0: Nat, Prf ((z @ x8) = x0) ~ Prf ((z © 5 x0) = s x0)

R D e s e

307  using the tactics *induction”, "reflexivity" and "rewri ¥
3o To this end, we irst nesd to define andition an Nats o/ .
309

310 symbol t < Nat = Nat;

311 potation ® infix right 10;
312 qule $x ez« $x
313 with $x @5 $y s ($x @ 8y);

i goals

315 opaque symbol zero_is neutral for s x : Prf(z e x = X) =

317 jinduction

318 [ { sinplify; reflexivity; §
319 | { assume x hyp_on x; simplify; rewrite hyp_on x; reflexivity; }
320
321

edition buffer

prosLE UTPUT  TERMINAL  DEBUG CONSOLE

rule ind Nat $0 $1$2 7 = $1
with ind Nat $8 S1 §2 (s $3)  $2 $3 (ind_Nat $0 $1 $2 $3);

s messages

symbol +
rotation + mhx Fight associative 10.080000;
rule $0 +

"Ath S0+ Succ'$1 « suce (49 + $1)

with 6 + 6 = $0;

$ mastert LF Lamb




File lambdapi . pkg

developments must have a file lambdapi . pkg describing where to
install the files relatively to the root of all installed libraries

package_name = my_1lib
root_path = logical.path.from.root.to.my_1lib



Importing the declarations of other files

lambdapi.pkg:

package_name = unary
root_path = nat.unary
filel.1lp:

symbol A : TYPE;

file2.1p:

require nat.unary.filel;
symbol a : nat.unary.filel.A;
open nat.unary.filel;

symbol a’ : A;

file3.1p:

require open nat.unary.filel nat.unary.file2;
symbol b = a;



Lambdapi syntax

BNF grammar:

https://raw.githubusercontent.com/Deducteam/lambdapi/master/doc/lambdapi.bnf
file extension: .1p
comments: /* ... /x... x/... x/0r // ...

identifiers: UTF16 characters and {| arbitrary string |}


https://raw.githubusercontent.com/Deducteam/lambdapi/master/doc/lambdapi.bnf

Lambdapi syntax for terms

TYPE sort for types
(id . )*id variable or constant
term term . ..term application
Mid[: term ], term abstraction
nid|[: term] , term dependent product
term — term non-dependent product
( term )

_ unknown term
let id [: term ] := term in term



Command for declaring/defining a symbol

modifier* symbol id param* [: term | [:= term | [begin proof end] ;

param = id | _ |Cid T : term ) |Lid T : term ]
implicit
parameters
modifier's:
e constant: not definable
® opaque: never reduced
® associative
® commutative
e private: not exported
® protected: exported but usable in rule left-hand sides only
® sequential: reduction strategy

e injective: used in unification



symbol
symbol
symbol
symbol

symbol

o

Examples of symbol declarations

TYPE;

: N — N;

N—N— N;

: N—- N — N;

notation + infix right 10;

notation X infix right 20;



Command for declaring rewrite rules

rule term — term (with term — term )* ;

pattern variables must be prefixed by $:

rule $x + 0 — $x
with $x + s $y — s ($x + $y);

Lambdapi tries to automatically check:

preservation of typing by rewrite rules (aka subject reduction)



Command for adding rewrite rules

Lambdapi supports:

overlapping rules

rule $x + 0 — $x
with $x + s $y — s ($x + $y)
with 0 + $x — $x
with s $x + $y = s ($x + $y);

matching on defined symbols
rule ($x + $y) + $z — $x + ($y + $z);
non-linear patterns

rule $x - $x — 0;

Lambdapi tries to automatically check:

local confluence (AC symbols/HO patterns not handled yet)



Higher-order pattern-matching

symbol R:TYPE;

symbol O:R;

symbol sin:R — R;

symbol cos:R — R;

symbol D:(R — R) — (R — R);

rule D (A x, sin $F.[x])

< X x, D $F.[x] X cos $F.[x];
rule D (A x, $V.[])

—~ X x, 0;



Non-linear matching

Example: decision procedure for group theory

symbol G
symbol 1
symbol

symbol

rule
with
with
with
with
with
with
with
with
with

($x
1
$x
inv
$x
inv
$x
inv
inv
inv

TYPE;

G;

G —> G — G; notation

inv : G

$y)
$x —
1 —
$x
inv
$x
(inv
1 —1
(inv

($x

— G;

$z — $x - (8$y
$x
$x
$x — 1
$x — 1
($x - $y) — $y
$x - $y) — $y

$x) — $x
$y) — inv $y

infix 10;

$z)

inv $x;



Queries and assertions

print id ;

type term ;

compute term ;

(assert | assertnot) id* F term (: |E) term ;

print +; // print type and rules too
print N; // print conmstructors and tinduction principle

type X;
compute 2 X 5;

assert 0 : N;
assertnot 0 : N — N;

assert x y zF x +y X z=x+ (y X z);
assertnot x y z F x +y X z = (x + y) X z;



Reducing proof checking to type checking

(aka the Curry-de Bruijn-Howard isomorphism)

// type of propositions
symbol Prop : TYPE;
symbol = : N - N — Prop; notation = infix 1;

// interpretation of propositions as types
// (Curry-de Brutijn-Howard <isomorphism)
symbol Prf : Prop — TYPE;

// exzamples of axzioms
symbol refl x : Prf(x = x);
symbol s-mon x y : Prf(x = y) —» Prf(s x = s y);
symbol ind_N (p : N — Prop)
(case_0: Prf(p 0))
(case_s: I x : N, Prf(p x) — Prf(p(s x)))
(n : N) : Prf(p n);



Stating an axiom vs Proving a theorem

Stating an axiom:

opaque symbol O_is_neutral_for_+ x : Prf (0 + x
// mo definition given now
// one can still be given later with a rule

Proving a theorem:

opaque symbol O_is_neutral_for_+ x : Prf (0 + x
// generates the typing goal Prf (0 + z = x)
// a proof must be given now
begin
// proof script
end;

Xx);

x)



Goals and proofs

symbol declarations/definitions can generate:
e typing goals x1:A1, ..., xn A7 B
e unification goals x1: AL, ..., xp  ApE t ="y

these goals can be solved by writing proof’s:

proof ::= (proof_step ;)*
proof_step ::= tactic ({ proof })*

e a proof is a ;-separated sequence of proof_step 's

e a proof_step is a tactic followed by as many proof's enclosed in
curly braces as the number of goals generated by the tactic

tactic 's for unification goals:

e solve (applied automatically)



Example of proof

https://raw.githubusercontent.com/Deducteam/lambdapi/master/tests/0K/tutorial.lp

opaque symbol O_is_neutral_for_+ x : Prf(0 + x = x) =
begin
induction
{reflexivity}
{assume x h; simplify; rewrite h; reflexivity}l}
end;


https://raw.githubusercontent.com/Deducteam/lambdapi/master/tests/OK/tutorial.lp

Tactics for typing goals

® simplify [id]
® refine term
— assume idT
— generalize id
— apply term
— induction
— have id : term
— reflexivity
— symmetry
— rewrite [right] [pattern] term like Rocq SSReflect

® why3 calls external prover



Defining inductive-recursive types

because symbol and rule declarations are separated, one can easily
define inductive-recursive types in Dedukti or Lambdapi:

// lists without duplicated elements
constant symbol L : TYPE;
symbol ¢ : N — L — Prop; notation ¢ infix 20;

constant symbol nil : L;
constant symbol cons x 1 : Prf(x ¢ 1) — L;

rule _ ¢ nil — T
with $x ¢ cons $y $1 _ — $x # $y A $x ¢ $1;



Command for generating induction principles

(currently for strictly positive parametric inductive types only)

inductive N : TYPE =0 : N | s : N —> N;

is equivalent to:

symbol N : TYPE;
symbol 0 : N;
symbol s : N — N;
symbol ind_N (p : N — Prop)
(case_0: Prf(p 0))
(case_s: Nl x : N, Prf(p x) — Prf(p(s x)))
(n : N) : Prf(p n);
rule ind_N $p $cO0 $cs 0 — $cO
with ind_N $p $c0 $cs (s $x)
— $cs $x (ind_N $p $cO0 $cs $x)



Example of inductive-inductive type

/* contexts and types in dependent type theory
Forsberg’s 2013 PhD thesis */

// contexts

inductive Ctx : TYPE =
| O : Ctx

| - : Ty I — Ctx

// types

with Ty : Ctx — TYPE =

| urlr: Tyl

| PIMNa: Ty (- T a) »>Ty I;



Lambdapi’s additional features wrt Dkcheck/Kocheck

Lambdapi is an interactive proof assistant for A[1/R

e has its own syntax and file extension .1p

e can read and output dk files

e supports Unicode characters and infix operators

e symbols can have implicit arguments

e can implicitly apply a type coercion in case of type mismatch
e symbol declaration/definition generates typing/unification goals
e goals can be solved by structured proof scripts (tactic trees)
e provides a rewrite tactic similar to Rocq/SSReflect

e can call external (first-order) automated theorem provers

e provides a command for generating induction principles

e provides a local confluence checker

e handles associative-commutative symbols differently

e supports user-defined unification rules and tactics



Practical session

clone https://github.com/Deducteam/lambdapi
have a look at tests/OK/tutorial.lp

modify or add some declarations/definitions/proofs


https://github.com/Deducteam/lambdapi
https://raw.githubusercontent.com/Deducteam/lambdapi/master/tests/OK/tutorial.lp

