=h|_ EuroProofNet

Encoding logics in A\T1/R

Frédéric Blanqui

Deductkeam

rd

école

normal le
supérieure
paris—saclay

Encoding logics in AlT/R

we have seen what is a theory in the All-calculus modulo rewriting:

e a signature mapping a number of symbols to their types
e a set of rewrite rules on those symbols

we are now going to see how to encode logics as Al1/R theories

First-order logic

e the set of terms
— built from a set of function symbols equipped with an arity

e the set of propositions

— built from a set of predicate symbols equipped with an arity
— and the logical connectives T, L, =, =, A, V, &, V, 3

e the set of axioms (the actual theory)

e the subset of provable propositions
— using deduction rules (e.g. natural deduction)

Natural deduction

provability, I, is a relation between a sequence of propositions I
(the assumptions) and a proposition B (the conclusion) inductively
defined from introduction and elimination rules for each connective:

oy AFB i [FA=B THA
(S-intro) 2= (-elim) B
MrM=A I N=Vx, A
(V-intro) kA xéf (V-elim) x

M=vx, A = A{(x,u)}

Encoding of first-order logic

e the set of terms | : TYPE

— built from a set of function symbols equipped with an arity
function symbol: | — ... = [—

Encoding of first-order logic

e the set of terms | : TYPE

— built from a set of function symbols equipped with an arity
function symbol: | — ... = [—

e the set of propositions Prop : TYPE

— built from a set of predicate symbols equipped with an arity
predicate symbol: | — ... — | — Prop

Encoding of first-order logic

e the set of terms | : TYPE

— built from a set of function symbols equipped with an arity
function symbol: | — ... = [—

e the set of propositions Prop : TYPE

— built from a set of predicate symbols equipped with an arity
predicate symbol: | — ... — | — Prop

— and the logical connectives T, L, =, =, A, V, &, V, 3
T : Prop, = : Prop — Prop, ¥ : (I — Prop) — Prop, ...
we use A-calculus to encode quantifiers:
we encode Vx, A as V(Ax : [, A)

Encoding of first-order logic

e the set of terms | : TYPE

— built from a set of function symbols equipped with an arity
function symbol: | — ... = [—

e the set of propositions Prop : TYPE

— built from a set of predicate symbols equipped with an arity
predicate symbol: | — ... — | — Prop

— and the logical connectives T, L, =, =, A, V, &, V, 3
T : Prop, = : Prop — Prop, ¥ : (I — Prop) — Prop, ...
we use A-calculus to encode quantifiers:
we encode Vx, A as V(Ax : [, A)

e the set of axioms (the actual theory)

e the subset of provable propositions

— using deduction rules (e.g. natural deduction)
but how to encode proofs?

Using A\-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

by interpreting propositions as types (=/—, V/I1)

the natural deduction rules

r A- B
M- A= B

- A=B I+ A
M- B

- A xér
rr Vx, A

(=-intro)

(=-elim)

(V-intro)

M- Vx,A
re A{(xu)}

(V-elim)

Using A\-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

by interpreting propositions as types (=/—, V/I1)
the natural deduction rules corresponds to the typing rules of Al:

Mx:AFt:B
N=Xx:At:A=B

lN~t:A=B I+u:A

(=-intro)

—eli
(S-elim) FFw: B
. N-t:A x¢r
(Fintro) — x A
. M=t:Vx,A
(V-elim)

M= tu: A{(x,u)}

and proof checking is reduced to type checking

Expliciting the Brouwer-Heyting-Kolmogorov interpretation

terms of type Prop are not types. ..

but we can interpret a proposition as a type by applying:

Prf : Prop — TYPE

Prf A is the type of proofs of proposition A

Expliciting the Brouwer-Heyting-Kolmogorov interpretation

terms of type Prop are not types. ..

but we can interpret a proposition as a type by applying:

Prf : Prop — TYPE

Prf A is the type of proofs of proposition A

but
Ax:Prf A)x :© PrfA— Prf A

and
Ax: Prf A,x [Prf(A= A)

Expliciting the Brouwer-Heyting-Kolmogorov interpretation

terms of type Prop are not types. ..

but we can interpret a proposition as a type by applying:

Prf : Prop — TYPE

Prf A is the type of proofs of proposition A

but
Ax:Prf A)x :© PrfA— Prf A

and
Ax: Prf A,x [Prf(A= A)

unless we add the rewrite rule:

|Prf(A=B) < PrfA— PrfB|

Encoding =

because Prf(A=- B) — Prf A— Prf B

the introduction rule for = is the abstraction:

Mx:PrfAFt: Prf B

A B (abs)

IR FTFAx:At:PrfA— PrfB
r-A= B8 (conv)

N=Ax:At: Prf(A= B)

(=-intro)

Encoding =

because Prf(A=- B) — Prf A— Prf B

the introduction rule for = is the abstraction:

Mx:PrfAFt: Prf B
Mr=-Xx:At:PrfA— Prf B
N=Ax:At: Prf(A= B)

AFB (abs)

(=-intro) TEAS B (conv)

the elimination rule for = is the application:

rN-A=B8 THA
=B

F=t: Prf(A= B)

r-t:PrfA—pPrfB ThHu:PrfA
= tu: Prf B

(=-elim)

(conv)

(app)

Encoding V

we can do something similar for ¥ : (I — Prop) — Prop by taking:

|Prf(vA) = Nx: 1, Prf(Ax)|

Encoding the other connectives

the other connectives can be defined by using a meta-level
quantification on propositions:

’Prf(A/\B) — I'IC:Prop,(PrfA—)PrfB—)PrfC)—)PrfC‘

Encoding the other connectives

the other connectives can be defined by using a meta-level
quantification on propositions:

’Prf(A/\B) — NC: Prop,(Prf A— Prf B— Prf C) — PrfC‘

introduction and elimination rules can be derived:
(A-intro):

Aa: Prf AA\b: Prf B,AC : Prop, \h: Prf A— Prf B — Prf C, hab
is of type
Prf A— Prf B — Prf(AA B)

Encoding the other connectives

the other connectives can be defined by using a meta-level
quantification on propositions:

’Prf(A/\B) — NC: Prop,(Prf A— Prf B— Prf C) — PrfC‘

introduction and elimination rules can be derived:
(A-intro):

Aa: Prf AA\b: Prf B,AC : Prop, \h: Prf A— Prf B — Prf C, hab
is of type
Prf A— Prf B — Prf(AA B)

(A-elim1):

Ac: Prf(ANB),cA(Xa: Prf A, A\b: Prf B, a)
is of type
Prf(ANB) — Prf A

To summarize: AI1/R-theory FOL for first-order logic

signature X ror:

| : TYPE
fol—...—=>1—1 for each function symbol f of arity n
Prop : TYPE

P:l—...—1— Prop for each predicate symbol P of arity n
T : Prop, —: Prop — Prop, V : (I — Prop) — Prop, ...

Prf : Prop — TYPE

a:PrfA for each axiom A

rules RFOL:

Prf(A= B) < Prf A — Prf B
Prf(YA) < MNx : I, Prf(Ax)
Prf(AAB) < NC : Prop,(Prf A— Prf B — Prf C) — Prf C
Prf 1L — MNC : Prop, Prf C
Prf(—=A) < PrfA — Prf L

Encoding of first-order logic in Al/FOL

encoding of propositions:

|Pty...ta| = Plti]...|tn]
encoding of terms: IT|=T

x| = x |AAB| = |A[A|B]
Ifty ... ta] = flta]| ... |ta] VX, Al =V(Ax 1 [,]A])

T, Al =T, X410 A
encoding of proofs:

Tr,A-B

frA=B 7

= AX|r|+1 : Prf|Al, 7T ar-s]

TrFA=B TTHA (=)
N-B ©

= |7rﬂ—A:>B’ ’WFI—A’

Properties of the encoding in AlN/FOL

e a term is mapped to a term of type /
e a proposition is mapped to a term of type Prop

e a proof of A is mapped to a term of type Prf |A|

Properties of the encoding in AlN/FOL

e a term is mapped to a term of type /
e a proposition is mapped to a term of type Prop

e a proof of A is mapped to a term of type Prf |A|

if we find t of type Prf |A|, can we deduce that A is provable ?

Properties of the encoding in Al/FOL

e a term is mapped to a term of type /
e a proposition is mapped to a term of type Prop

e a proof of A is mapped to a term of type Prf |A|
if we find t of type Prf |A|, can we deduce that A is provable ?

e yes, the encoding is conservative:
if Prf |A| is inhabited then A is provable

proof sketch: because < g terminates and is confluent, t has a
normal form, and terms in normal form can be easily translated
back in first-order logic and natural deduction

Multi-sorted first-order logic

for each sort I (e.g. point, line, circle), add:

I : TYPE
Yk : (Ix = Prop) — Prop

Prf(ViA) — MNx : Iy, Prf(Ax)

Polymorphic first-order logic

same trick as for the BHK interpretation of propositions:

Set : TYPE type of sorts
El : Set — TYPE interpretation of sorts as types
L Set for each sort ¢

V:MNa: Set,(El a — Prop) — Prop

Prf(Vap) < MNx : El a, Prf(px)

Higher-order logic

order quantification on
1 elements
2 sets of elements
3 sets of sets of elements

w any set

Higher-order logic

order quantification on
1 elements
2 sets of elements
3 sets of sets of elements
w any set

quantification on functions:
~» . Set — Set — Set
El(a~ b) — Ela — Elb

Higher-order logic

order quantification on
1 elements
2 sets of elements

3 sets of sets of elements

w any set

quantification on functions:
~» . Set — Set — Set
El(a~ b) — Ela — Elb

quantification on propositions (e.g. Vp, p = p):
o: Set
El o — Prop

Encoding dependent types

dependent implication:
=4 : Na: Prop, (Prf a — Prop) — Prop
Prf(a=-4 b) <= Nx : Prf a, Prf(bx)

Encoding dependent types

dependent implication:
=4 : Na: Prop, (Prf a — Prop) — Prop
Prf(a=-4 b) <= Nx : Prf a, Prf(bx)

dependent types:
~q:MNa: Set,(Ela — Set) — Set
El(a~q b) — Nx : El a, EI(bx)

Encoding dependent types

dependent implication:
=4 : Na: Prop, (Prf a — Prop) — Prop
Prf(a=-4 b) <= Nx : Prf a, Prf(bx)

dependent types:
~q:MNa: Set,(Ela — Set) — Set
El(a~q b) — Nx : El a, EI(bx)

proofs in object-terms:
7 : Mp: Prop, (Prf p — Set) — Set
El(m pa) < Mh: Prf p, El(a h)

example: div : El(t~~q Ay : El v, m(y > 0)(Ah, 1))
takes 3 arguments: x : Elv, y : Elv, h: Prf(y > 0)
and returns a term of type El¢

Encoding the systems of Barendregt's A\-cube

feature PTS rule AM/R rule

simple types TYPE, TYPE | Prf(a=4 b) < lx : Prf a, Prf(bx)
polymorphic types | KIND, TYPE Prf(Yab) — Nx : El a, Prf(bx)
dependent types | TYPE,KIND El(mwab) < MNx : Prf a, EI(bx)
type constructors | KIND, KIND El(a~4 b) — MNx : El a, EI(bx)

@ polymorphic
types type
constructors

adding dependent
types

The AM/R theory U and its sub-theories
38 symbols, 28 rules, 13 sub-theories

Prfc? :>C7 /\07 VC7VC, 3C

0

succ
pred
positive

Encoding functional Pure Type Systems
terms and types:

t=x|tt|Ax:t,t|Mx:t,t|seS

typing rules:
Nr-A:s = (x,A)er
0 T,x:AF FEx: A
N (s1,:%) €A
(sort) s
r-A:s; Mx:AFB:s ((s1,%),s3) €P
(prod)

NEMx:AB:s3
Nx:AFt:B TFHFMNx:AB:s THt:Mx:AB ITFu:A
NEXx:At:MNx:AB M tu: B{(x,u)}
FEt:A Acg A THEA s
M=t A

Encoding functional Pure Type Systems
(Cousineau & Dowek, 2007)

signature:

Us : TYPE for each sort s € S
El : Us — TYPE

s1: Us, for every (s1,s2) € A
Ts s - Ma: Us, (Elsy a— Us,) = Us, for every (s1,%,53) € P
rules:

Els, s1 — Us, for every (s1,5) € A
Els,(s,.5, @ab) < MNx : Els, a, Els,(b x) for every (s1,s2,53) € P
encoding:

Ix|r = x

Islr =

[Ax © A, tlr = Ax ELIA|, [t xA flfr-A:s

|tulr = |t[r|ulr
“_IX LA, B’r = 7T51752’A’r()‘x : EIS1’A’|—7 ’B‘RXSA)
fFTFA:ssand N, x: AFB: s

Encoding other features

e recursive functions (Assaf 2015, Cauderlier 2016, Férey 2021)

— different approaches, no general theory yet
— encoding in recursors instead ? (cf. Sozeau, Cockx, ...)

e universe polymorphism (Genestier 2020)

— requires rewriting with matching modulo AC
or rewriting on AC canonical forms (Blanqui 2022)

e 7-conversion on function types (Genestier 2020)
e predicate subtyping with proof irrelevance (Hondet 2020)

e co-inductive objects and co-recursion (Felicissimo 2021)

