
EuroProofNet

Encoding logics in λΠ/R

Frédéric Blanqui

Deduc⊢eam



Encoding logics in λΠ/R

we have seen what is a theory in the λΠ-calculus modulo rewriting:

• a signature mapping a number of symbols to their types

• a set of rewrite rules on those symbols

we are now going to see how to encode logics as λΠ/R theories



First-order logic

• the set of terms

– built from a set of function symbols equipped with an arity

• the set of propositions

– built from a set of predicate symbols equipped with an arity
– and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃

• the set of axioms (the actual theory)

• the subset of provable propositions

– using deduction rules (e.g. natural deduction)



Natural deduction

provability, ⊢, is a relation between a sequence of propositions Γ
(the assumptions) and a proposition B (the conclusion) inductively
defined from introduction and elimination rules for each connective:

(⇒-intro)
Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒-elim)

Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B

(∀-intro)
Γ ⊢ A x /∈ Γ

Γ ⊢ ∀x ,A
(∀-elim)

Γ ⊢ ∀x ,A
Γ ⊢ A{(x , u)}

. . .



Encoding of first-order logic

• the set of terms I : TYPE

– built from a set of function symbols equipped with an arity
function symbol: I → . . . → I → I

• the set of propositions Prop : TYPE

– built from a set of predicate symbols equipped with an arity
predicate symbol: I → . . . → I → Prop

– and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃
⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .

we use λ-calculus to encode quantifiers:
we encode ∀x ,A as ∀(λx : I ,A)

• the set of axioms (the actual theory)

• the subset of provable propositions

– using deduction rules (e.g. natural deduction)
but how to encode proofs?
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Using λ-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

by interpreting propositions as types (⇒/→, ∀/Π)

the natural deduction rules

corresponds to the typing rules of λΠ:

(⇒-intro)
Γ,

x :

A ⊢

t :

B

Γ ⊢

λx : A, t :

A ⇒ B

(⇒-elim)
Γ ⊢

t :

A ⇒ B Γ ⊢

u :

A

Γ ⊢

tu :

B

(∀-intro)
Γ ⊢

t :

A x /∈ Γ

Γ ⊢

λx , t :

∀x ,A

(∀-elim)
Γ ⊢

t :

∀x ,A
Γ ⊢

tu :

A{(x , u)}

and proof checking is reduced to type checking
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Expliciting the Brouwer-Heyting-Kolmogorov interpretation

terms of type Prop are not types. . .

but we can interpret a proposition as a type by applying:

Prf : Prop → TYPE

Prf A is the type of proofs of proposition A

but
λx : Prf A, x : Prf A → Prf A

and
λx : Prf A, x ̸ : Prf (A ⇒ A)

unless we add the rewrite rule:

Prf (A⇒B) ↪→ Prf A → Prf B
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Encoding ⇒

because Prf (A ⇒ B) ↪→ Prf A → Prf B

the introduction rule for ⇒ is the abstraction:

(⇒-intro)
Γ,A ⊢ B

Γ ⊢ A ⇒ B

(abs)
Γ, x : Prf A ⊢ t : Prf B

Γ ⊢ λx : A, t : Prf A → Prf B
(conv)

Γ ⊢ λx : A, t : Prf (A ⇒ B)

the elimination rule for ⇒ is the application:

(⇒-elim)
Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B

(conv)
Γ ⊢ t : Prf (A ⇒ B)

Γ ⊢ t : Prf A → Prf B
(app)

Γ ⊢ u : Prf A

Γ ⊢ tu : Prf B
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Encoding ∀

we can do something similar for ∀ : (I → Prop) → Prop by taking:

Prf (∀A) ↪→ Πx : I ,Prf (Ax)



Encoding the other connectives

the other connectives can be defined by using a meta-level
quantification on propositions:

Prf (A∧B) ↪→ ΠC : Prop, (Prf A → Prf B → Prf C ) → Prf C

introduction and elimination rules can be derived:

(∧-intro):

λa : Prf A, λb : Prf B, λC : Prop, λh : Prf A → Prf B → Prf C , hab
is of type

Prf A → Prf B → Prf (A ∧ B)

(∧-elim1):

λc : Prf (A ∧ B), c A (λa : Prf A, λb : Prf B, a)
is of type

Prf (A ∧ B) → Prf A
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To summarize: λΠ/R-theory FOL for first-order logic

signature ΣFOL:

I : TYPE
f : I → . . . → I → I for each function symbol f of arity n
Prop : TYPE
P : I → . . . → I → Prop for each predicate symbol P of arity n
⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .
Prf : Prop → TYPE

a : Prf A for each axiom A

rules RFOL:

Prf (A⇒B) ↪→ Prf A → Prf B
Prf (∀A) ↪→ Πx : I ,Prf (Ax)

Prf (A∧B) ↪→ ΠC : Prop, (Prf A → Prf B → Prf C ) → Prf C
Prf⊥ ↪→ ΠC : Prop,Prf C

Prf (¬A) ↪→ Prf A → Prf⊥
. . .



Encoding of first-order logic in λΠ/FOL

encoding of terms:

|x | = x
|ft1 . . . tn| = f |t1| . . . |tn|

encoding of propositions:

|Pt1 . . . tn| = P|t1| . . . |tn|
|⊤| = ⊤
|A ∧ B| = |A| ∧ |B|
|∀x ,A| = ∀(λx : I , |A|)
. . .
|Γ,A| = |Γ|, x∥Γ∥+1 : A

encoding of proofs:∣∣∣∣∣ πΓ,A⊢B

Γ ⊢ A ⇒ B
(⇒i )

∣∣∣∣∣ = λx∥Γ∥+1 : Prf |A|, |πΓ,A⊢B |∣∣∣∣∣πΓ⊢A⇒B πΓ⊢A

Γ ⊢ B
(⇒e)

∣∣∣∣∣ = |πΓ⊢A⇒B | |πΓ⊢A|

. . .



Properties of the encoding in λΠ/FOL

• a term is mapped to a term of type I

• a proposition is mapped to a term of type Prop

• a proof of A is mapped to a term of type Prf |A|

if we find t of type Prf |A|, can we deduce that A is provable ?

• yes, the encoding is conservative:
if Prf |A| is inhabited then A is provable

proof sketch: because ↪→βR terminates and is confluent, t has a
normal form, and terms in normal form can be easily translated
back in first-order logic and natural deduction
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Multi-sorted first-order logic

for each sort Ik (e.g. point, line, circle), add:

Ik : TYPE
∀k : (Ik → Prop) → Prop

Prf (∀kA) ↪→ Πx : Ik ,Prf (Ax)



Polymorphic first-order logic

same trick as for the BHK interpretation of propositions:

Set : TYPE type of sorts
El : Set → TYPE interpretation of sorts as types
ι : Set for each sort ι

∀ : Πa : Set, (El a → Prop) → Prop

Prf (∀ap) ↪→ Πx : El a,Prf (p x)



Higher-order logic

order quantification on

1 elements
2 sets of elements
3 sets of sets of elements
. . . . . .
ω any set

quantification on functions:

; : Set → Set → Set

El(a; b) ↪→ El a → El b

quantification on propositions (e.g. ∀p, p ⇒ p):

o : Set

El o ↪→ Prop
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Encoding dependent types

dependent implication:

⇒d : Πa : Prop, (Prf a → Prop) → Prop

Prf (a⇒d b) ↪→ Πx : Prf a,Prf (b x)

dependent types:

;d : Πa : Set, (El a → Set) → Set

El(a;d b) ↪→ Πx : El a,El(b x)

proofs in object-terms:

π : Πp : Prop, (Prf p → Set) → Set

El(π p a) ↪→ Πh : Prf p,El(a h)

example: div : El(ι;d λy : El ι, π(y > 0)(λh, ι))
takes 3 arguments: x : El ι, y : El ι, h : Prf (y > 0)

and returns a term of type El ι
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Encoding the systems of Barendregt’s λ-cube

feature PTS rule λΠ/R rule
simple types TYPE, TYPE Prf (a⇒d b) ↪→ Πx : Prf a,Prf (b x)

polymorphic types KIND, TYPE Prf (∀ a b) ↪→ Πx : El a,Prf (b x)
dependent types TYPE, KIND El(π a b) ↪→ Πx : Prf a,El(b x)
type constructors KIND, KIND El(a;d b) ↪→ Πx : El a,El(b x)

λ→

λ2

λω

λΠ

λΠω

λΠ2

λω λΠω

λ→ dependent
types

type
constructors

polymorphic
types

adding

ad
d
in
g

ad
di
ng



The λΠ/R theory U and its sub-theories

38 symbols, 28 rules, 13 sub-theories



Encoding functional Pure Type Systems
terms and types:

t := x | tt | λx : t, t | Πx : t, t | s ∈ S

typing rules:

∅ ⊢
Γ ⊢ A : s

Γ, x : A ⊢
Γ ⊢ (x ,A) ∈ Γ

Γ ⊢ x : A

(sort)
Γ ⊢ (s1, s2) ∈ A

Γ ⊢ s1 : s2

(prod)
Γ ⊢ A : s1 Γ, x : A ⊢ B : s2 ((s1, s2), s3) ∈ P

Γ ⊢ Πx : A,B : s3

Γ, x : A ⊢ t : B Γ ⊢ Πx : A,B : s

Γ ⊢ λx : A, t : Πx : A,B

Γ ⊢ t : Πx : A,B Γ ⊢ u : A

Γ ⊢ tu : B{(x , u)}
Γ ⊢ t : A A ≃β A′ Γ ⊢ A′ : s

Γ ⊢ t : A′



Encoding functional Pure Type Systems
(Cousineau & Dowek, 2007)

signature:

Us : TYPE for each sort s ∈ S
Els : Us → TYPE

s1 : Us2 for every (s1, s2) ∈ A
πs1,s2 : Πa : Us1 , (Els1 a → Us2) → Us3 for every (s1, s2, s3) ∈ P

rules:

Els2 s1 ↪→ Us1 for every (s1, s2) ∈ A
Els3(πs1,s2 a b) ↪→ Πx : Els1 a,Els2(b x) for every (s1, s2, s3) ∈ P

encoding:

|x |Γ = x
|s|Γ = s
|λx : A, t|Γ = λx : Els |A|Γ, |t|Γ,x :A if Γ ⊢ A : s
|tu|Γ = |t|Γ|u|Γ
|Πx : A,B|Γ = πs1,s2 |A|Γ(λx : Els1 |A|Γ, |B|Γ,x :A)

if Γ ⊢ A : s1 and Γ, x : A ⊢ B : s2



Encoding other features

• recursive functions (Assaf 2015, Cauderlier 2016, Férey 2021)

– different approaches, no general theory yet
– encoding in recursors instead ? (cf. Sozeau, Cockx, . . . )

• universe polymorphism (Genestier 2020)

– requires rewriting with matching modulo AC
or rewriting on AC canonical forms (Blanqui 2022)

• η-conversion on function types (Genestier 2020)

• predicate subtyping with proof irrelevance (Hondet 2020)

• co-inductive objects and co-recursion (Felicissimo 2021)


