

Encoding logics in $\lambda \Pi / \mathcal{R}$

Frédéric Blanqui

Deduc⊢eam.

Encoding logics in $\lambda\Pi/\mathcal{R}$

we have seen what is a theory in the $\lambda\Pi$ -calculus modulo rewriting:

- a signature mapping a number of symbols to their types
- a set of rewrite rules on those symbols

we are now going to see how to encode logics as $\lambda\Pi/\mathcal{R}$ theories

First-order logic

- the set of terms
 - built from a set of function symbols equipped with an arity
- the set of propositions
 - built from a set of predicate symbols equipped with an arity
 - and the logical connectives \top , \bot , \neg , \Rightarrow , \land , \lor , \Leftrightarrow , \forall , \exists
- the set of axioms (the actual theory)
- the subset of provable propositions
 - using deduction rules (e.g. natural deduction)

Natural deduction

provability, \vdash , is a relation between a sequence of propositions Γ (the assumptions) and a proposition B (the conclusion) inductively defined from introduction and elimination rules for each connective:

$$(\Rightarrow \text{-intro}) \ \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \quad (\Rightarrow \text{-elim}) \ \frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B} \quad (\forall \text{-elim}) \ \frac{\Gamma \vdash A \Rightarrow B}{\Gamma \vdash B}$$
$$(\forall \text{-intro}) \ \frac{\Gamma \vdash A \quad x \notin \Gamma}{\Gamma \vdash \forall x, A} \quad (\forall \text{-elim}) \ \frac{\Gamma \vdash \forall x, A}{\Gamma \vdash A\{(x, u)\}}$$

. . .

- the set of terms /: TYPE
 - built from a set of function symbols equipped with an arity function symbol: $I \rightarrow ... \rightarrow I \rightarrow I$

- the set of terms /: TYPE
 - built from a set of function symbols equipped with an arity function symbol: $I \to \ldots \to I \to I$
- - built from a set of predicate symbols equipped with an arity predicate symbol: $I \to \ldots \to I \to Prop$

- the set of terms /: TYPE
 - built from a set of function symbols equipped with an arity function symbol: $I \to \ldots \to I \to I$
- the set of propositions

Prop : TYPE

- built from a set of predicate symbols equipped with an arity predicate symbol: $I \to \ldots \to I \to Prop$
- and the logical connectives \top , \bot , \neg , \Rightarrow , \land , \lor , \Leftrightarrow , \forall , \exists \top : Prop, \neg : Prop \rightarrow Prop, \forall : $(I \rightarrow Prop) \rightarrow Prop$, ...

we use λ -calculus to encode quantifiers: we encode $\forall x, A$ as $\forall (\lambda x : I, A)$

```
    the set of terms

                                                                                        : TYPE
  - built from a set of function symbols equipped with an arity
                                                     function symbol: I \rightarrow \ldots \rightarrow I \rightarrow I

    the set of propositions

                                                                                  Prop: TYPE
  - built from a set of predicate symbols equipped with an arity
                                               predicate symbol: I \rightarrow \ldots \rightarrow I \rightarrow Prop
  - and the logical connectives \top, \bot, \neg, \Rightarrow, \land, \lor, \Leftrightarrow, \forall, \exists
                      \top: Prop, \neg: Prop \rightarrow Prop, \forall: (I \rightarrow Prop) \rightarrow Prop, ...
                                              we use \lambda-calculus to encode quantifiers:
                                                         we encode \forall x, A as \forall (\lambda x : I, A)
```

- the set of axioms (the actual theory)
- the subset of provable propositions
 - using deduction rules (e.g. natural deduction)

but how to encode proofs?

Using λ -terms to represent proofs (Curry-de Bruijn-Howard isomorphism)

by interpreting propositions as types (\Rightarrow/\to , \forall/Π) the natural deduction rules

$$(\Rightarrow -intro) \frac{\Gamma, \quad A \vdash B}{\Gamma \vdash \quad A \Rightarrow B}$$

$$(\Rightarrow -elim) \frac{\Gamma \vdash \quad A \Rightarrow B \quad \Gamma \vdash \quad A}{\Gamma \vdash \quad B}$$

$$(\forall -intro) \frac{\Gamma \vdash \quad A \quad x \notin \Gamma}{\Gamma \vdash \quad \forall x, A}$$

$$(\forall -elim) \frac{\Gamma \vdash \quad \forall x, A}{\Gamma \vdash \quad A\{(x, u)\}}$$

Using λ -terms to represent proofs (Curry-de Bruijn-Howard isomorphism)

by interpreting propositions as types (\Rightarrow/\rightarrow , \forall/Π)

the natural deduction rules corresponds to the typing rules of $\lambda\Pi$:

$$(\Rightarrow -intro) \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A, t : A \Rightarrow B}$$

$$(\Rightarrow -elim) \frac{\Gamma \vdash t : A \Rightarrow B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B}$$

$$(\forall -intro) \frac{\Gamma \vdash t : A \quad x \notin \Gamma}{\Gamma \vdash \lambda x, t : \forall x, A}$$

$$(\forall -elim) \frac{\Gamma \vdash t : \forall x, A}{\Gamma \vdash tu : A\{(x, u)\}}$$

and proof checking is reduced to type checking

Expliciting the Brouwer-Heyting-Kolmogorov interpretation

terms of type *Prop* are not types. . .

but we can interpret a proposition as a type by applying:

$$Prf: Prop \rightarrow TYPE$$

Prf A is the type of proofs of proposition *A*

Expliciting the Brouwer-Heyting-Kolmogorov interpretation

terms of type *Prop* are not types. . .

but we can interpret a proposition as a type by applying:

$$Prf: Prop \rightarrow TYPE$$

Prf A is the type of proofs of proposition A

but

$$\lambda x : Prf A, x : Prf A \rightarrow Prf A$$

and

$$\lambda x : Prf A, x / Prf(A \Rightarrow A)$$

Expliciting the Brouwer-Heyting-Kolmogorov interpretation

terms of type *Prop* are not types. . .

but we can interpret a proposition as a type by applying:

$$Prf: Prop \rightarrow TYPE$$

Prf A is the type of proofs of proposition A

but

$$\lambda x : Prf A, x : Prf A \rightarrow Prf A$$

and

$$\lambda x : Prf A, x / Prf(A \Rightarrow A)$$

unless we add the rewrite rule:

$$Prf(A \Rightarrow B) \hookrightarrow Prf A \rightarrow Prf B$$

Encoding \Rightarrow

because $Prf(A \Rightarrow B) \hookrightarrow Prf(A \rightarrow Prf(B))$

the introduction rule for \Rightarrow is the abstraction:

$$(\Rightarrow -intro) \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \qquad \text{(abs)} \frac{\Gamma, x : Prf \ A \vdash t : Prf \ B}{\Gamma \vdash \lambda x : A, t : Prf \ A \Rightarrow Prf \ B}$$
$$(conv) \frac{\Gamma, A \vdash B}{\Gamma \vdash \lambda x : A, t : Prf \ A \Rightarrow Prf \ B}$$

Encoding
$$\Rightarrow$$

because $Prf(A \Rightarrow B) \hookrightarrow Prf(A \rightarrow Prf(B))$

the introduction rule for \Rightarrow is the abstraction:

$$(\Rightarrow -intro) \frac{\Gamma, A \vdash B}{\Gamma \vdash A \Rightarrow B} \qquad \text{(abs)} \frac{\Gamma, x : Prf \ A \vdash t : Prf \ B}{\Gamma \vdash \lambda x : A, t : Prf \ A \Rightarrow Prf \ B}$$
$$(conv) \frac{\Gamma, x : Prf \ A \vdash t : Prf \ B}{\Gamma \vdash \lambda x : A, t : Prf \ (A \Rightarrow B)}$$

the elimination rule for \Rightarrow is the application:

$$(\Rightarrow \text{-elim}) \frac{\Gamma \vdash A \Rightarrow B \quad \Gamma \vdash A}{\Gamma \vdash B}$$

$$(conv) \frac{\Gamma \vdash t : Prf(A \Rightarrow B)}{\Gamma \vdash t : Prf(A \Rightarrow B)} \quad \Gamma \vdash u : Prf(A \Rightarrow B)$$

$$\Gamma \vdash tu : Prf(B \Rightarrow B)$$

Encoding ∀

we can do something similar for $\forall : (I \rightarrow Prop) \rightarrow Prop$ by taking:

$$Prf(\forall A) \hookrightarrow \Pi x : I, Prf(Ax)$$

Encoding the other connectives

the other connectives can be defined by using a meta-level quantification on propositions:

$$Prf(A \land B) \hookrightarrow \Pi C : Prop, (Prf A \rightarrow Prf B \rightarrow Prf C) \rightarrow Prf C$$

Encoding the other connectives

the other connectives can be defined by using a meta-level quantification on propositions:

$$Prf(A \land B) \hookrightarrow \Pi C : Prop, (Prf A \rightarrow Prf B \rightarrow Prf C) \rightarrow Prf C$$

introduction and elimination rules can be derived:

 $(\land -intro)$:

$$\lambda a$$
: $Prf\ A, \lambda b$: $Prf\ B, \lambda C$: $Prop, \lambda h$: $Prf\ A \rightarrow Prf\ B \rightarrow Prf\ C, hab$ is of type
$$Prf\ A \rightarrow Prf\ B \rightarrow Prf(A \land B)$$

Encoding the other connectives

the other connectives can be defined by using a meta-level quantification on propositions:

$$Prf(A \land B) \hookrightarrow \Pi C : Prop, (Prf A \rightarrow Prf B \rightarrow Prf C) \rightarrow Prf C$$

introduction and elimination rules can be derived:

$$(\land -intro)$$
:

$$\lambda a: Prf \ A, \lambda b: Prf \ B, \lambda C: Prop, \lambda h: Prf \ A \rightarrow Prf \ B \rightarrow Prf \ C, hab$$
 is of type
$$Prf \ A \rightarrow Prf \ B \rightarrow Prf (A \wedge B)$$

 $(\land -elim1)$:

$$\lambda c : Prf(A \wedge B), c A(\lambda a : Prf A, \lambda b : Prf B, a)$$

is of type
 $Prf(A \wedge B) \rightarrow Prf A$

To summarize: $\lambda \Pi / \mathcal{R}$ -theory *FOL* for first-order logic

```
signature \Sigma_{FOI}:
: TYPE
f: I \to \ldots \to I \to I
                                            for each function symbol f of arity n
Prop: TYPE
P: I \to \ldots \to I \to Prop for each predicate symbol P of arity n
\top: Prop, \neg: Prop \rightarrow Prop, \forall: (I \rightarrow Prop) \rightarrow Prop, \dots
Prf: Prop \rightarrow TYPE
a: Prf A
                                                                         for each axiom A
rules \mathcal{R}_{FOI}:
  Prf(A \Rightarrow B) \hookrightarrow Prf A \rightarrow Prf B
       Prf(\forall A) \hookrightarrow \Pi x : I, Prf(Ax)
   Prf(A \land B) \hookrightarrow \Pi C : Prop, (Prf A \rightarrow Prf B \rightarrow Prf C) \rightarrow Prf C
            Prf \perp \hookrightarrow \Pi C : Prop, Prf C
       Prf(\neg A) \hookrightarrow PrfA \rightarrow Prf \perp
```

. . .

Encoding of first-order logic in $\lambda \Pi / FOL$

encoding of propositions:

encoding of terms:
$$\begin{aligned} |Pt_1 \dots t_n| &= P|t_1| \dots |t_n| \\ |\top| &= \top \\ |A \wedge B| &= |A| \wedge |B| \\ |ft_1 \dots t_n| &= f|t_1| \dots |t_n| \end{aligned}$$
$$|\forall x, A| &= \forall (\lambda x : I, |A|)$$
$$\dots$$
$$|\Gamma, A| &= |\Gamma|, x_{||\Gamma||+1} : A$$

encoding of proofs:

$$\begin{vmatrix} \frac{\pi_{\Gamma,A \vdash B}}{\Gamma \vdash A \Rightarrow B} (\Rightarrow_{i}) \end{vmatrix} = \lambda x_{\|\Gamma\|+1} : Prf |A|, |\pi_{\Gamma,A \vdash B}|$$
$$\begin{vmatrix} \frac{\pi_{\Gamma \vdash A \Rightarrow B} \quad \pi_{\Gamma \vdash A}}{\Gamma \vdash B} (\Rightarrow_{e}) \end{vmatrix} = |\pi_{\Gamma \vdash A \Rightarrow B}| |\pi_{\Gamma \vdash A}|$$

Properties of the encoding in $\lambda \Pi/FOL$

- a term is mapped to a term of type /
- a proposition is mapped to a term of type *Prop*
- a proof of A is mapped to a term of type Prf |A|

Properties of the encoding in $\lambda \Pi/FOL$

- a term is mapped to a term of type /
- a proposition is mapped to a term of type *Prop*
- a proof of A is mapped to a term of type Prf |A|

if we find t of type Prf|A|, can we deduce that A is provable?

Properties of the encoding in $\lambda \Pi/FOL$

- a term is mapped to a term of type /
- a proposition is mapped to a term of type *Prop*
- a proof of A is mapped to a term of type Prf |A|

if we find t of type Prf |A|, can we deduce that A is provable?

yes, the encoding is conservative:
 if Prf |A| is inhabited then A is provable

proof sketch: because $\hookrightarrow_{\beta\mathcal{R}}$ terminates and is confluent, t has a normal form, and terms in normal form can be easily translated back in first-order logic and natural deduction

Multi-sorted first-order logic

for each sort I_k (e.g. point, line, circle), add:

1k: TYPE

 $\forall_k : (I_k \to Prop) \to Prop$

 $Prf(\forall_k A) \hookrightarrow \Pi x : I_k, Prf(Ax)$

Polymorphic first-order logic

same trick as for the BHK interpretation of propositions:

```
Set: TYPE type of sorts EI: Set \rightarrow TYPE interpretation of sorts as types \iota: Set for each sort \iota
```

 $\forall: \Pi a: Set, (El \ a \rightarrow Prop) \rightarrow Prop$

 $Prf(\forall ap) \hookrightarrow \Pi x : El \ a, Prf(p \ x)$

Higher-order logic

order	quantification on		
1	elements		
2	sets of elements		
3	sets of sets of elements		
ω	any set		

Higher-order logic

order	quantification on		
1	elements		
2	sets of elements		
3	sets of sets of elements		
ω	any set		

quantification on functions:

$$\sim$$
 : $Set \rightarrow Set \rightarrow Set$

$$EI(a \sim b) \hookrightarrow EI \ a \rightarrow EI \ b$$

Higher-order logic

order	quantification on
1	elements
2	sets of elements
3	sets of sets of elements
ω	any set

quantification on functions:

$$\sim$$
 : $Set \rightarrow Set \rightarrow Set$

$$El(a \leadsto b) \hookrightarrow El \ a \to El \ b$$

quantification on propositions (e.g. $\forall p, p \Rightarrow p$):

o : Set

 $Elo \hookrightarrow Prop$

Encoding dependent types

dependent implication:

```
\Rightarrow_d : \Pi a : Prop, (Prf \ a \rightarrow Prop) \rightarrow Prop
```

$$Prf(a \Rightarrow_d b) \hookrightarrow \Pi x : Prf a, Prf(bx)$$

Encoding dependent types

dependent implication:

```
\Rightarrow_d : \Pi a : Prop, (Prf \ a \rightarrow Prop) \rightarrow Prop

Prf(a \Rightarrow_d b) \hookrightarrow \Pi x : Prf \ a, Prf(b \ x)
```

dependent types:

$$\sim_d$$
: $\sqcap a : Set, (El \ a \rightarrow Set) \rightarrow Set$
 $El(a \sim_d b) \hookrightarrow \sqcap x : El \ a, El(b x)$

Encoding dependent types

dependent implication:

```
\Rightarrow_d : \Pi a : Prop, (Prf \ a \rightarrow Prop) \rightarrow Prop

Prf(a \Rightarrow_d b) \hookrightarrow \Pi x : Prf \ a, Prf(b \ x)
```

dependent types:

```
\sim_d: \Pi a : Set, (El \ a \rightarrow Set) \rightarrow Set
El(a \sim_d b) \hookrightarrow \Pi x : El \ a, El(b \ x)
```

proofs in object-terms:

```
\pi: \Pi p: Prop, (Prf \ p \rightarrow Set) \rightarrow Set
El(\pi \ p \ a) \hookrightarrow \Pi h: Prf \ p, El(a \ h)
\text{example: } \operatorname{div}: El(\iota \leadsto_d \lambda y: El \ \iota, \pi(y > 0)(\lambda h, \iota))
\text{takes 3 arguments: } x: El \ \iota, y: El \ \iota, h: Prf(y > 0)
\text{and returns a term of type } El \ \iota
```

Encoding the systems of Barendregt's λ -cube

feature	PTS rule	$\lambda \Pi / \mathcal{R}$ rule
simple types	TYPE, TYPE	$Prf(a \Rightarrow_d b) \hookrightarrow \Pi x : Prf a, Prf(bx)$
polymorphic types	KIND, TYPE	$Prf(\forall a b) \hookrightarrow \Pi x : El a, Prf(b x)$
dependent types	TYPE, KIND	$El(\pi \ a \ b) \hookrightarrow \Pi x : Prf \ a, El(b \ x)$
type constructors	KIND, KIND	$El(a \leadsto_d b) \hookrightarrow \Pi x : El \ a, El(b \ x)$

The $\lambda\Pi/\mathcal{R}$ theory U and its sub-theories

38 symbols, 28 rules, 13 sub-theories

Encoding functional Pure Type Systems

terms and types:

$$t := x \mid tt \mid \lambda x : t, t \mid \Pi x : t, t \mid s \in \mathcal{S}$$

typing rules:

$$\frac{\Gamma \vdash A : s}{\Gamma, x : A \vdash} \qquad \frac{\Gamma \vdash (x, A) \in \Gamma}{\Gamma \vdash x : A}$$

$$(sort) \frac{\Gamma \vdash (s_1, s_2) \in \mathcal{A}}{\Gamma \vdash s_1 : s_2}$$

$$(prod) \frac{\Gamma \vdash A : s_1 \quad \Gamma, x : A \vdash B : s_2 \quad ((s_1, s_2), s_3) \in \mathcal{P}}{\Gamma \vdash \Pi x : A, B : s_3}$$

$$\frac{\Gamma, x : A \vdash t : B \quad \Gamma \vdash \Pi x : A, B : s}{\Gamma \vdash \lambda x : A, t : \Pi x : A, B} \qquad \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash t u : B\{(x, u)\}}$$

$$\frac{\Gamma \vdash t : A \quad A \simeq_{\beta} A' \quad \Gamma \vdash A' : s}{\Gamma \vdash t : A'}$$

Encoding functional Pure Type Systems

(Cousineau & Dowek, 2007)

rules:

$$\begin{array}{ll} \textit{El}_{s_2} \; s_1 \hookrightarrow \textit{U}_{s_1} & \text{for every } (s_1, s_2) \in \mathcal{A} \\ \textit{El}_{s_3} (\pi_{s_1, s_2} \; a \; b) \hookrightarrow \Pi x : \textit{El}_{s_1} \; a, \textit{El}_{s_2} (b \, x) & \text{for every } (s_1, s_2, s_3) \in \mathcal{P} \end{array}$$

encoding:

$$\begin{aligned} |x|_{\Gamma} &= x \\ |s|_{\Gamma} &= s \\ |\lambda x : A, t|_{\Gamma} &= \lambda x : El_{s}|A|_{\Gamma}, |t|_{\Gamma,x:A} \\ |tu|_{\Gamma} &= |t|_{\Gamma}|u|_{\Gamma} \\ |\Pi x : A, B|_{\Gamma} &= \pi_{s_{1},s_{2}}|A|_{\Gamma}(\lambda x : El_{s_{1}}|A|_{\Gamma}, |B|_{\Gamma,x:A}) \end{aligned}$$
 if $\Gamma \vdash A : s$

if $\Gamma \vdash A : s_1$ and $\Gamma, x : A \vdash B : s_2$

Encoding other features

- recursive functions (Assaf 2015, Cauderlier 2016, Férey 2021)
 - different approaches, no general theory yet
 - encoding in recursors instead ? (cf. Sozeau, Cockx, ...)
- universe polymorphism (Genestier 2020)
 - requires rewriting with matching modulo AC or rewriting on AC canonical forms (Blanqui 2022)
- η -conversion on function types (Genestier 2020)
- predicate subtyping with proof irrelevance (Hondet 2020)
- co-inductive objects and co-recursion (Felicissimo 2021)