=h|_ EuroProofNet

Properties of A[1/R

Frédéric Blanqui

Deducteam

rd

école

rd normale
supérieure
paris—saclay

Some important properties

TC decidability of the typing relation

SN termination of — g from typable terms

SRg | preservation of typing by — 4

SRy | preservation of typing by —5%

LCR | local confluence of — 3% from arbitrary terms

CR | confluence of — g from arbitrary terms

TCR | confluence of —3r from typable terms

Remarks:

¢ CR+ SR = TCR

e LCR + SN = CR (Newman's Lemma)
e LCR + SN + SR = TCR

Outline

Decidability of type-checking (TC)

Decidability of type-checking (TC)

mix type-inference f} and type-checking |

r-tnA Al B
r-t|B

(conv)

Decidability of type-checking (TC)

mix type-inference f} and type-checking |

FEeftA Alig B
el B
I valid I x:A T valid
————— (var
FE 71 Af FxAT FxqA

(conv)

(fun)

Decidability of type-checking (TC)

mix type-inference f} and type-checking |

r-tnA Al B

(comv) — 7B
c I valid I x:A T valid
) rna,) T carixiaA
I valid [-AUTYPE ,x:AFB{s
(sort) i (prod) s x f

[- TYPE {} KIND - Nx:AB1fs

Decidability of type-checking (TC)

mix type-inference f} and type-checking |

r-tfnA Al B

(comv) — 7B
c I valid I x:A T valid
) rna,) T carixiaA
I valid [-AUTYPE ,x:AFB{s
(sort) i (prod) s x f

[- TYPE {} KIND - Nx:AB1fs

oy TFAUTYPE [xAF (4B BKIND
(abs) [FAxAt) Mx:AB

Decidability of type-checking (TC)

mix type-inference f} and type-checking |

r-tfnA Al B

(comv) — 7B
c I valid I x:A T valid
) rna,) T carixiaA
I valid [-AUTYPE ,x:AFB{s
(sort) i (prod) s x f

[- TYPE {} KIND - Nx:AB1fs

b FrN-AJTYPE I,xAFtf B B #KIND
(abs) M= At Nx:AB

TEEf € CoipMxAB THullA
M= tuf B{x+— u}

(app)

Decidability of type-checking (TC)

mix type-inference f} and type-checking |

r-tnA Al B
r-t|B

(conv)

SN + LCR + SR = TC

et € CojplxAB THul A
M= tuf B{x+— u}

(app)

Outline

Subject-reduction for 3 (SRp)

Type safety, aka subject-reduction (SR)
in typed programming languages

assume a typed prog. language with operational semantics —

lift: Aand t < u, then u: A

meaning: an expression checked of type A at compile time
can only evaluate to a value of type A

e fondamental property of statically-typed prog. languages

e ensure memory safety

SR in type-based logical systems

assume a type system with cut-elimination relation —

‘ift:Aandtf—>u,thenu:A

meaning: a proof of proposition A can only reduce to a proof of A
e correctness of cut-elimination

e correctness of type inference in dependent type theories

Subject-reduction for 5 (SRp)

F(A\x:At)u: C
I

Ft{x—u}:C?

Subject-reduction for 5 (SRp)

F(A\x:At):Nx:A B Fu A

F(Ax:A t)u: B'{x — u} B'{x— u} |5 C

F(Ax:A t)u: C
I

Ft{x—u}:C?7?

Subject-reduction for 5 (SRp)

x:AFt:B
F(A\x:At):Nx:AB Mx:A,B |5z Nx:A', B’
F(x:At): Nx:A, B Fu:A
F(Ax:A t)u: B'{x— u} B'{x+~ u} 5 C
F(Ax:Atu: C
4

Ft{x—u}:C?7?

Subject-reduction for 5 (SRp)

x:AFt:B
F(A\x:At):Nx:AB Mx:A B 5 Nx: A, B
F(Ax:At): Nx:A, B Fu: A
F (A t)u: B {x— u}
F(Ax:At)u: C
I

x:AFt:B u:A?
Ft{x— u}: B{x— u} B{x— u} lsr C7?

Ft{x—u}:C

Subject-reduction for 5 (SRp)

x:A-t:B
F(A\x:At):Nx:AB Mx:A,B 5 Nx: A, B
F(x:At): Nx:A, B Fu:A
F(Ax:A t)u: B'{x— u}

F(Ax:At)u: C

4

WA AL AT Bljr B'?
x:AFt:B u:A B{X'—)U}‘LERB,{XHU}

Fit{x— u}:B{x— u} B{x— u} I3 C

Ft{x—u}:C

Subject-reduction for 5 (SRp)

x:AEt:B
F(A\x:At):Nx:AB Mx:A,B 5 Mx:A B
F(Ax:At): Nx: A B Fu: A
F(Ax:A t)u: B'{x+— u} B'{xw— u} |55 C
F(Ax:At)u: C

4

M:A B L Mx: AL B XA B g AL B
ui A A g A Blsr B
xAEt:B A B{x»—)u}i/*BRB'{xHu} B'{xw u} |5, C

Ft{x— u}: B{x— u} B{x— u}ljr C
Ft{x—u}:C

Subject-reduction for 5 (SRp)

x:AFt:B
F(A\x:At):Nx:AB Mx:A,B 5 Nx: A, B’
F(Ax:At): Nx: A B Fu: A
F(Ax:A t)u: B'{x > u}

F(Ax:At)u: C
Mx:A, B lsp Nx:A B Mx:A B e Mx: A B

* /
u: A Al A Blim B,
x:AFt: B u:A B{X’_)”}i/a‘RB{X’_)”}

Ft{x— u}: B{x— u} B{x— u}ljr C
Ft{x—u}:C

Outline

Subject-reduction for rules (SRg)

Subject-reduction (SR) for a rule | — r

Goal: VI,o,C, THIlo:C = TFkro:C 7

undecidable in Al/R [Saillard, 2015]

A first (not so good) idea

Goal: VI,o,C, THIlo:C = Tkro:C 7

\there exists B such that /: Band r: B ?\

A first (not so good) idea

Goal: VI,o,C, THIlo:C = Tkro:C 7

\there exists B such that /: Band r: B ?\

= enforces many rules to be non-linear

= rewriting is less efficient and confluence more difficult to prove

Example: tail function on vectors

symbol A:TYPE

symbol V:N — TYPE

symbol nil:V O

symbol cons:A — Il n:N,V n — V(s n)

symbol tail:ll n:N,V(s n) - V n

rule tail $n (comns $x $p $v) — $v

Example: tail function on vectors

symbol A:TYPE

symbol V:N — TYPE

symbol nil:V O

symbol cons:A — [l n:N,V n = V(s n)

symbol tail:ll n:N,V(s n) - V n

rule tail $n (comns $x $p $v) — $v

the LHS is not typable:

cons x p v has type V(s p)
but tailn expects an argument of type V(s n)

replacing p by n makes it typable but non-linear

Non-linearity breaks confluence on untyped terms

Assume that we have a rule Dxx < E with E a constant

Then, <3 U <x is not confluent on untyped terms

Non-linearity breaks confluence on untyped terms

Assume that we have a rule Dxx < E with E a constant

Then, <3 U < is not confluent on untyped terms
F = Ac, \a, Da(ca)

Take: ¢ C = Yr = (Ax, F(xx))(Ax, F(xx)) =3 FC
A= Yc = (Ax, C(xx))(Ax, C(xx)) —5 CA

Then A <5 CA <5 FCA =2 DA(CA) <5 D(CA)(CA) —r E

Non-linearity breaks confluence on untyped terms

Assume that we have a rule Dxx < E with E a constant
Then, <3 U < is not confluent on untyped terms

F = Ac, \a, Da(ca)
Take: ¢ C = Yr = (Ax, F(xx))(Ax, F(xx)) =3 FC

A= Yc = (Ax, C(xx))(Ax, C(xx)) —5 CA
Then A — 3 CA <3 FCA <—>% DA(CA) —5 D(CA)(CA) —=r E
and thus A —3 CA <—>}§ CE too but

CE can never reduce to E (CE <3 FCE <% DE(CE) —p...)

Example: tail function on vectors

symbol V:N — TYPE
symbol nil:VO
symbol cons:A — [l n:N,V n — V(s n)

symbol tail:ll n:N,V(s n) - V n

yet the rule preserves typing:

e let tail n (cons x p v) be a typable instance of the LHS

e by inversion of typing rules, we get:

tail n (cons x p V) <
X y

\ , ~—~
N Vp :
V(sp)L5r V(sn)

-~

‘Vn

e since V and s are undefined, V(s p) | V(sn) implies p |5 n

Procedure for checking SR

Step 1: compute the equations £ that must be satisfied
for the LHS to be of type C (fresh constant)

goal: prove that the RHS has type C modulo £

problem: how to type-check modulo equations?

Procedure for checking SR

Step 1: compute the equations £ that must be satisfied
for the LHS to be of type C (fresh constant)

goal: prove that the RHS has type C modulo £
problem: how to type-check modulo equations?

Step 2: turn the equations into a convergent rewrite system S
using Knuth-Bendix completion

Step 3: check that the RHS has type C in \[1/R + S

Knuth-Bendix completion (1969)

Knuth-Bendix completion consists in turning a set of equations &
into a terminating and eventually confluent set of rewrite rules R
having the same equational theory by:

e turning an equation / = r into a rewrite rule / — r
if / > r in some fixed reduction ordering >

e turning a non-confluent critical pair between two overlapping
rule left hand-hides into a new equation

A this may not terminate!

Example of Knuth-Bendix completion

Take the equations:
1.x+0=x 2.x+(sy)=s(x+y) 3.(x+y)+z=x+(y+2)

Example of Knuth-Bendix completion

Take the equations:
1.x+0=x 2.x+(sy)=s(x+y) 3.(x+y)+z=x+(y+2)

The lexicographic path ordering > with + > s > 0 and comparison of
arguments from right to left can orient all the equations from left to right:
Ix4+0—=x 2.x+(sy)—=s(x+y) 3. (x+y)+z—=x+(y+2z2)

Example of Knuth-Bendix completion

Take the equations:
1.x+0=x 2.x+(sy)=s(x+y) 3.(x+y)+z=x+(y+2)

The lexicographic path ordering > with + > s > 0 and comparison of
arguments from right to left can orient all the equations from left to right:
ILx+0—=x 2.x+(sy)—=s(x+y) 3.(x+y)+z—=x+(y+2z)

But there are critical pairs. How many?

Example of Knuth-Bendix completion

Take the equations:
1.x+0=x 2.x+(sy)=s(x+y) 3.(x+y)+z=x+(y+2)

The lexicographic path ordering > with + > s > 0 and comparison of
arguments from right to left can orient all the equations from left to right:
ILx+0—=x 2.x+(sy)—=s(x+y) 3.(x+y)+z—=x+(y+2z)

But there are critical pairs. How many? 5

x+z 142 (x+0)+z =3 x+(0+2)

s(x+y)+z o= (x+sy)+z =3 x+(sy+2z)
(x+(y+2)+t 3= (x+y)+z)+t =3 (x+y)+(z+1)
x+y 1= (x+y)+0 =3 x+(y+0)

s((x+y)+2z) o= (x+y)+sz =3 x+(y+52)

w np o=

o s

Are they confluent?

Example of Knuth-Bendix completion

Take the equations:
1.x+0=x 2.x+(sy)=s(x+y) 3.(x+y)+z=x+(y+2)

The lexicographic path ordering > with + > s > 0 and comparison of
arguments from right to left can orient all the equations from left to right:
ILx+0—=x 2.x+(sy)—=s(x+y) 3.(x+y)+z—=x+(y+2z)

But there are critical pairs. How many? 5

x+z 142 (x+0)+z =3 x+(0+2)

s(x+y)+z o= (x+sy)+z =3 x+(sy+2z)
(x+(y+2)+t 3= (x+y)+z)+t =3 (x+y)+(z+1)
x+y 1= (x+y)+0 =3 x+(y+0)

5. 5((x+y)+2z) o= (x+y)+sz =3 x+(y+s52)

w np o=

=

Are they confluent? Not 1, 2 and 3. This creates new equations:
4 x+z=x+0+2z) 5s(x+y)+z=x+(sy+2z2)

Step 1: compute typability constraints £ of the LHS

input output

t 1 A [€]
~— ~—
term type equations

var) ———— (¥ new constant for the unknown type of y
(var) y1y10] ()
(f) f: |_|X1:T1,...,|_|X,,:Tn,U tlTAl[gl] t,,TA,,[gn]
un
fti...thn T Uol&1U...UE U{A1 = Tio,..., Ay = Tho}]
where 0 = {x1 — t1,..., X5 — ty}
tail n (cons x p v)
Tn=N 1x=A 1p=N 1v=Vp

1¥(s p)=V(sn)

1Vn

Step 2: turn £ into a convergent rewrite system S

using Knuth-Bendix completion procedure (KB)
with any well-founded order total on ground terms (e.g. LPO)

remark: KB always terminates on ground equations in this case

example: x>v>p>n>V>T>N>s>p>n

£
S:

Lo

X
b

Step 3: check that RHS has same type as LHS modulo §

tail n (cons x p V) <= v
-~ <~

B >, 2
1a=N 1x=A 1p=N 1v=Vp

1¥(s p)=V(sn)

1Vn

S: XA p—=N v—=Vp n—=N V(sp)— V(sn)

we now want to check if

’v:Vn modquS?\

Step 3: check that RHS has same type as LHS modulo §

tail n (cons x p V) <= v
NG T N Y
=N 1x=A 4p=n Tv=Vp

1¥(s p)=V(sn)

T;Irn
S: XA p—=N v—=Vp n—=N V(sp)— V(sn)

we now want to check if

’v:Vn modquS?\

no it doesn't work since v:vand v Lirs Un &/

Step 1': simplify equations
using confluence of — 3

E: X=A p=N v=Vp n=N V(sp)=V(sn)
because V and s are undefined, hence injective, £ is equivalent to:
E: x=A p=N v=Vp =N p=n

step 3(KB) withx>v>p>n>V>T>N>s>p>m

S: XA p=>N v—>Vn 01— N p—n

Step 3: check that RHS has same type as LHS modulo §

tail n (comns x p v) < v
N N~
Tn=N 1Tx=A 1p=N 1wv=Vp
19(s p)=V(s n)
1Wn

S: XA p=>N v—=Vn n—=N p—n

we want to check if

v : Vn modulo &' ?

now it works sincev:vandv—Vn &

Conclusion: procedure for SR(/ < r)

A procedure to prove that a rewrite rule preserves typing in AIM/R:

Step 1: compute the equations £ that must be satisfied
for the LHS to be of type C (fresh constant)

Step 2: simplify equations using confluence of — gz
Step 3: turn the equations into a convergent rewrite system &
using Knuth-Bendix completion

Step 4: check that the RHS has type C in some sub-system of
AM/R+S

CR+ TC- = SRy

problem: confluence and termination of < gr U —s 7

Outline

Termination of <3z (SN)

Termination of <3 (1st attempt)

Theorem: for all ', t, A, if [=t : A then t is SN.
Proof. By induction on the definition of .

NM=t:NMx:AB TFu:A t SN u SN
M- tu: B 7T SN?

(app)

Termination of <3 (1st attempt)

Theorem: for all ', t, A, if [=t : A then t is SN.
Proof. By induction on the definition of .

NM=t:NMx:AB TFu:A t SN u SN
M- tu: B 7T SN?

(app)

Can't we take t = u = Ax: A, xx?

Termination of <3 (1st attempt)

Theorem: for all ', ¢t, A, if [+t : A then t is SN.

Proof. By induction on the definition of .

NM=t:NMx:AB TFu:A t SN u SN
M- tu: B 7T SN?

(app)

Can't we take t = u = Ax: A, xx? No, t is not typable.
But can't we find a similar example that is typable?

Termination of <3 (1st attempt)

Theorem: for all ', t, A, if [=t : A then t is SN.
Proof. By induction on the definition of .

NM=t:NMx:AB TFu:A t SN u SN
M- tu: B 7T SN?

(app)

Can't we take t = u = Ax: A, xx? No, t is not typable.
But can't we find a similar example that is typable?

Y=A:TYPE,c: (A= A) - Af: A= (A=A
R = {f(cx) = x}
t = Ax:A, fxx

u=ct

Then tu g f(ct)(ct) =g tu

Termination of <3 (1st attempt)

Conclusion: to prove the termination of an application, the
termination of the function and of the argument is not enough

We need to prove a stronger property, super-termination: a term
t : MNx:A, B is super-terminating if, for all super-terminating
argument u : A, tu : BY is super-terminating

As a consequence, we need to:

e interpret each type A by a set [A] of super-terminating terms

e prove that t : A=t € [A]

remark: super-termination is more usually called convertibility
(Tait), reducibility (Girard) or computability (Stenlund)

Definition of super-termination (1st attempt)
Let 7 be the set of terms.

[7] = {teT |Vuel[A],tue[B]}if T=Tx:AB
1 SN otherwise

Is it well defined?

Definition of super-termination (1st attempt)
Let 7 be the set of terms.

[7] = {teT |Vuel[A],tue[B]}if T=Tx:AB
1 SN otherwise

Is it well defined?

Yes. By Markowsky fixpoint theorem (1976): every monotone
function F on a chain-complete poset (every totally ordered subset
has a lub) has a least fixpoint.

e The set Z = F,(T,P(T)) of partial functions from T to its
powerset is chain-complete wrt function extension C.

e The function F : Z — 7 such that
[{teT |Vuel(A),tuecl(B)}if T=Tx:AB
FIN(T) = { SN otherwise
dom(F(1)) ={T | T =Nx:A,B= A¢€dom(l) AVu € I(A), BY € dom(/)}
is monotone

Definition of super-termination (1st attempt)

Let 7 be the set of terms.

(= (EeTIVuclA w8} if T=rxAB
“ 1 SN otherwise

Does super-termination imply termination: [T] C SN?

Definition of super-termination (1st attempt)

Let 7 be the set of terms.

(= (EeTIVuclA w8} if T=rxAB
“ 1 SN otherwise

Does super-termination imply termination: [T] C SN?
Yes, if [A] # 0 whenever T =Tx:A, B.
Do we have [T] # 07?

Definition of super-termination (1st attempt)

Let 7 be the set of terms.

(= (EeTIVuclA w8} if T=rxAB
“ 1 SN otherwise

Does super-termination imply termination: [T] C SN?

Yes, if [A] # 0 whenever T =Tx:A, B.

Do we have [T] # 07?

Yes: forall T, {xuy...u,|x € Var,uy,...,u, € SN} C[T]

Termination of <3z (2nd attempt)
Theorem: for all ', t, A, if [Ft: Athen t € [A].

Proof. By induction on the definition of .
F=t:Nx:AB TFu:A te[Nx:AB] uelA]

=
(app) M- tu: BY tu € [BY]?

Termination of <3z (2nd attempt)
Theorem: for all ', t, A, if [Ft: Athen t € [A].
Proof. By induction on the definition of .

FrEt:Nx:AB THu:A te[Nx:AB] uce€lA]
M- tu: BY - tu € [BY]?
Mx:AFt:B t € [B]
rl—)\x:A,t:I_Ix:A,B:AX:A,tE[[I'IX:A,B]]?

Vu € [A], (Ax: A, t)u € [BY]?

(app)

(abs)

Termination of <3z (2nd attempt)
Theorem: for all ', t, A, if [Ft: Athen t € [A].

Proof. By induction on the definition of .

FrEt:Nx:AB THu:A te[Nx:AB] uce€lA]
M- tu: BY - tu € [BY]?
Mx:AFt:B t € [B]
rl—)\x:A,t:I_Ix:A,B:AX:A,tE[[I'IX:A,B]]?

Vu € [A], (Ax: A, t)u € [BY]?

(app)

(abs)

A term is neutral if it is neither an abstraction nor a partially
applied function symbol. Examples: (Ax:A, t)u and t + wv.

Lemma: a neutral term is super-terminating if all its reducts are
super-terminating.

Proof. Since t is neutral, tu is not reducible at the top and
—(tu) = —=(t)uU t —(u).

Termination of <3z (2nd attempt)
Theorem: for all ', t, A, if [-t : Athen t € [A].
Proof. By induction on the definition of .

F-t:Nx:AB THu:A te[Nx:AB] uelA]
M- tw: B - tu € [BY]?
x:Akt:B t € [B]
FE AL MxAB ACALE[Nx:A BJ?

Vu e [A], (Ax:A, t)u € [BY]?

(app)

(abs)

Vu e [A], tY € [BL]?

Termination of <3z (2nd attempt)
Theorem: for all ', t, A, if [-t : Athen t € [A].

Proof. By induction on the definition of .

N=t:Mx:AB THu:A te[x:AB] uelA]
M- tw: B - tu € [BY]?
x:Akt:B t € [B]
FE AL MxAB ACALE[Nx:A BJ?

Vu e [A], (Ax:A, t)u € [BY]?

(app)

(abs)

Vu e [A], tY € [BL]?
We need to generalize the theorem again:

A substitution o is super-terminating wrt I, written o =T,
if, for all (x,A) € T, xo € [Ao].

Theorem: for all I, t, A 0, if TFt:Aand o T then to € [Ao].

Termination of < 3% (3rd attempt)

Theorem: for all I',t,A,0,if T -t:Aand o =T then to € [Ao].
Proof. By induction on the definition of .

FEt:Nx:AB THu:A toe[MNx:Ao,Bo] uo € [Ao]
M- tw: B ~ (tu)o € [BUo]?

(app)

Yes since Bo = Bo.°.

Termination of < 3% (3rd attempt)

Theorem: for all I, t,A 0, ifTFt:Aand o =T then t € [Ao].
Proof. By induction on the definition of .

N=t:MNx:A B I'I—u:A:>ta€[[|'|x:Aa,Ba]] uo € [Ad]
M tu: BY (tu)o € [BYo]?

(app)

x:Akt:B to? € [Bol]
M= Xx:At:MNx:A B = Mx: Ao, to € [Nx: Ao, Bo]?

Vu € [Ac], (Ax:Ac, to)u € [Bol]?

(abs)

Yu € [Ac], to? € [Bol]?

Termination of < 3% (3rd attempt)

Theorem: for all [, t, Ao, if T+t:Aand o =T then t € [Ao].
Proof. By induction on the definition of .

F=t:Nx:AB ThHu:A toe[Mx:Ao,Bo] uo € [Ao]

(app) - tu: B - (tu)o € [BYo]?
Mx:AFt:B to? € [Boy]
(abs) =
M= Xx:At:MNx:A B Ax: Ao, to € [Nx: Ao, Bo]?
r-t:A N-A:s Algr B TFB:s to € [Ad]
(conv)

=
N-¢:B to € [Bo]?

Termination of < 3% (3rd attempt)

Theorem: for all [, t, Ao, if T+t:Aand o =T then t € [Ao].
Proof. By induction on the definition of .

F=t:Nx:AB ThHu:A toe[Mx:Ao,Bo] uo € [Ao]

(app) - tu: B - (tu)o € [BYo]?
Mx:AFt:B to? € [Boy]
(abs) =
M= Xx:At:MNx:A B Ax: Ao, to € [Nx: Ao, Bo]?
r-t:A N-A:s Algr B TFB:s to € [Ad]
(conv)

=
N-¢:B to € [Bo]?

No, we need [| to be invariant by |sr.

Definition of super-termination (2nd attempt)
assuming that < g is locally-confluent (LCR)

Let 7 be the set of terms.

{teT |Vue[Al,tue B} if T € SNAnf(T)=T"Nx:AB
[71= SN otherwise

Termination of <3z (4th attempt)
assuming that < g is locally-confluent (LCR)

Theorem: for all I',t, A, if [+t : Athen t € [A].
Proof. By induction on the definition of .

N=t:Nx:AB THu:A toe[lx:Ac,Bo] uo € [Ad]
M- tw: B ~ (tu)o € [BUo]?

(app)

Mx:AFt:B tod € [Boy]

b =
(@0S) At Ix:A B Ax: Ao, to € [Mx: Ad, Bo]?

N-t:A TkA:s Algr B TFB:s to € [Ao]

=
(conv -t:B to € [Bo]?

Termination of < 3r (4th attempt)
assuming that < g is locally-confluent (LCR)

Theorem: for all I',t, A, if [+t : Athen t € [A].
Proof. By induction on the definition of .

N=t:Nx:AB THu:A toe[lx:Ac,Bo] uo € [Ad]
M- tw: B ~ (tu)o € [BUo]?

(app)

Mx:AFt:B tod € [Boy]

b =
(@0S) At Ix:A B Ax: Ao, to € [Mx: Ad, Bo]?

N-t:A TkA:s Algr B TFB:s to € [Ao]

=
(conv -t:B to € [Bo]?

Yes because Ao € SN, Bo € SN and nf(Ac) = nf(Bo).

Termination of < 3r (4th attempt)
assuming that < g is locally-confluent (LCR)

Theorem: for all ', t, A, if [Ft: Athen t € [A].
Proof. By induction on the definition of .

F=t:Nx:AB THu:A toe[lx:Ac,Bo] uo € [Ao]
=
M tu: BY (tu)o € [BYo]?

(app)

x:Akt:B to? € [Bol]

b
(3bS) T At A B M Av. o € [N Ao, Bo?

r-t:A N-A:s Algr B THB:s to € [Ad]
(conv

-t B 7 to € [Bo]?

f:Acxy FA:s
Ff:A

(sig) = f € [A]?

Termination of < 3r (4th attempt)
assuming that < g is locally-confluent (LCR)

Theorem: for all ', t, A, if [Ft: Athen t € [A].
Proof. By induction on the definition of .
Nt:MNx:AB Thu:A toe[lx:Ao,Bo] uo € [Ad]

(app) Mk tu: BY = (tu)o € [BYo]?
Mx:AFt:B to! € [Bo!
(abs) X oY e [BdY]

FF oAt TxAB A As to € [Mx:Ad, Bo]?

r-t:A N-A:s Algr B THB:s to € [Ad]
-t B 7 to € [Bo]?

(conv

. f:Aexr FHA:s
(sie) A
to prove the super-termination of function symbols, we can use
dependency pairs

= f € [A]?

Dependency pairs on first-order terms

dependency pairs: fl...[i > gmy...m;iff fh ... [—reR,
gmi ... m; is a subterm of r, my...m; are all the arguments to
which g is applied, and g is defined.

chain relation on terms ft; ... t; with t1,...,t; terminating:

t1 > ho ... ti—=*lo f/1.../,->gm1...mj

ft1...t,-§gm10...mja

Theorem (Arts & Giesl 2000, reformulated):
function symbols are super-terminating if > terminates

Dependency pairs in Al1/R

dependency pairs: idem

chain relation on terms ft; ... t; with t1,..., t; super-terminating:

t1 =*ho ... ti—="lo fl1.../,->gm1...mj

ftl...t;t;+1...tp §gm10...mjauj+1...uq

Theorem: function symbols are super-terminating if > terminates
and the theory (X, R) is well-structured and accessible

Well-structured theory

a theory (X, R) is well-structured if:

e the strict part of the dependency relation f = g if g occurs in
the type of f or in a right hand-side of a rule of f is
well-founded (always true when X is finite)

Well-structured theory

a theory (X, R) is well-structured if:

e the strict part of the dependency relation f = g if g occurs in
the type of f or in a right hand-side of a rule of f is
well-founded (always true when X is finite)

e foreveryrule flh ...l = r € Rwith f : Mxy: Aq1,...,Mx,:Ap, B,
there is a typing environment A such that:

. RI }
A |_f/1__/n r: Bxll ...up

“Xn

where =4, is similar to - except that types can only be typed
using symbols < f

Accessible theory

a well-structured theory (X, R) is accessible if, for every rule
fh...l,—>reR, with f:Mxy:Ag,...,MNx,: A, B,

0):Awheneverf<11...’"J):xlel,...,x,,:A,,

Xn

(matching preserves super-termination)

example of non-accessible pattern:
cy with c:(A—-B)—A
c(Ax, xx) € [A] = SN but Ax,xx ¢ [A— B]

Termination of the chain relation >

there exist various techniques for proving the termination of a
chain relation for first or simply-typed higher-order rewriting

a simple one is size-change termination (SCT)

Theorem: > terminates if ¥ is finite and, in the transitive closure
of the graph on X having, for each dp fly ... [, > gmy ... mg, an
edge from f to g labeled by the matrix (ajj)i<p j<q With

-1 ifli>m
ajj = 0 if /,' = mj
+00 otherwise

all idempotent matrices labeling a loop has some -1 on the diagonal

Conclusion for termination

LCR + TC™ = SN

Dependencies between properties

ORCS

- -» for dependency on a sub-system

