

Properties of $\lambda \Pi / \mathcal{R}$

Frédéric Blanqui

Deduc⊢eam.

Some important properties

TC	decidability of the typing relation
SN	termination of $ ightarrow_{eta \mathcal{R}}$ from typable terms
SR_eta	preservation of typing by $ ightarrow_{eta}$
$SR_\mathcal{R}$	preservation of typing by $ o_{\mathcal{R}}$
LCR	local confluence of $ ightarrow_{eta\mathcal{R}}$ from arbitrary terms
CR	confluence of $ ightarrow_{eta \mathcal{R}}$ from arbitrary terms
TCR	confluence of $ ightarrow_{eta\mathcal{R}}$ from typable terms

Remarks:

- $\bullet \ \mathsf{CR} + \mathsf{SR} \Rightarrow \mathsf{TCR}$
- $\bullet \ \mathsf{LCR} + \mathsf{SN} \Rightarrow \mathsf{CR} \ \big(\mathsf{Newman's} \ \mathsf{Lemma}\big)$
- LCR + SN + SR \Rightarrow TCR

Outline

Decidability of type-checking (TC)

Subject-reduction for β (SR $_{\beta}$)

Subject-reduction for rules (SR_R)

Termination of $\hookrightarrow_{\beta\mathcal{R}}$ (SN)

$$(conv) \frac{\Gamma \vdash t \uparrow A \quad A \downarrow_{\beta \mathcal{R}}^* B}{\Gamma \vdash t \Downarrow B}$$

$$(conv) \frac{\Gamma \vdash t \Uparrow A \quad A \downarrow_{\beta R}^* B}{\Gamma \vdash t \Downarrow B}$$

$$(fun) \frac{\Gamma \text{ valid}}{\Gamma \vdash f \Uparrow A_f} \quad (var) \frac{\Gamma, x:A, \Gamma' \text{ valid}}{\Gamma, x:A, \Gamma' \vdash x \Uparrow A}$$

$$(sort) \frac{\Gamma \text{ valid}}{\Gamma \vdash \text{TYPE} \Uparrow \text{KIND}} \quad (prod) \frac{\Gamma \vdash A \Downarrow \text{TYPE} \quad \Gamma, x:A \vdash B \Uparrow s}{\Gamma \vdash \Pi x:A.B \Uparrow s}$$

$$(abs) \frac{\Gamma \vdash A \Downarrow \text{TYPE} \quad \Gamma, x:A \vdash t \Uparrow B \quad B \neq \text{KIND}}{\Gamma \vdash \lambda x:A.t \Uparrow \Pi x:A.B}$$

$$(conv) \frac{\Gamma \vdash t \Uparrow A \quad A \downarrow_{\beta \mathcal{R}}^* B}{\Gamma \vdash t \Downarrow B}$$

$$(fun) \frac{\Gamma \text{ valid}}{\Gamma \vdash f \Uparrow A_f} \quad (var) \frac{\Gamma, x:A, \Gamma' \text{ valid}}{\Gamma, x:A, \Gamma' \vdash x \Uparrow A}$$

$$(sort) \frac{\Gamma \text{ valid}}{\Gamma \vdash \text{TYPE} \Uparrow \text{KIND}} \quad (prod) \frac{\Gamma \vdash A \Downarrow \text{TYPE} \quad \Gamma, x:A \vdash B \Uparrow s}{\Gamma \vdash \Pi x:A.B \Uparrow s}$$

$$(abs) \frac{\Gamma \vdash A \Downarrow \text{TYPE} \quad \Gamma, x:A \vdash t \Uparrow B \quad B \neq \text{KIND}}{\Gamma \vdash \lambda x:A.t \Uparrow \Pi x:A.B}$$

$$(app) \frac{\Gamma \vdash t \Uparrow C \quad C \hookrightarrow_{\beta \mathcal{R}}^* \Pi x:A.B \quad \Gamma \vdash u \Downarrow A}{\Gamma \vdash tu \Uparrow B \{x \mapsto u\}}$$

$$(conv) \frac{\Gamma \vdash t \uparrow A \quad A \downarrow_{\beta \mathcal{R}}^* B}{\Gamma \vdash t \Downarrow B}$$

$$SN + LCR + SR \Rightarrow TC$$

(app)
$$\frac{\Gamma \vdash t \Uparrow C \quad C \hookrightarrow_{\beta \mathcal{R}}^* \Pi x : A.B \quad \Gamma \vdash u \Downarrow A}{\Gamma \vdash tu \Uparrow B\{x \mapsto u\}}$$

Outline

Decidability of type-checking (TC)

Subject-reduction for β (SR $_{\beta}$)

Subject-reduction for rules (SR_R)

Termination of $\hookrightarrow_{\beta\mathcal{R}}$ (SN)

Type safety, aka subject-reduction (SR) in typed programming languages

assume a typed prog. language with operational semantics \hookrightarrow subject-reduction property (SR):

if
$$t: A$$
 and $t \hookrightarrow u$, then $u: A$

meaning: an expression checked of type A at compile time can only evaluate to a value of type A

- fondamental property of statically-typed prog. languages
- ensure memory safety

SR in type-based logical systems

assume a type system with cut-elimination relation \hookrightarrow subject-reduction property (SR):

if
$$t: A$$
 and $t \hookrightarrow u$, then $u: A$

meaning: a proof of proposition A can only reduce to a proof of A

- correctness of cut-elimination
- correctness of type inference in dependent type theories

$$\vdash (\lambda x : A, t)u : C$$
 \Downarrow

 $\vdash t\{x \mapsto u\} : C ?$

$$\frac{\vdash (\lambda x : A, t) : \Pi x : A', B' \qquad \vdash u : A'}{\vdash (\lambda x : A, t)u : B'\{x \mapsto u\}} \qquad \frac{B'\{x \mapsto u\} \downarrow_{\beta \mathcal{R}}^* C}{\vdash (\lambda x : A, t)u : C}$$

$$\Downarrow$$

 $\vdash t\{x \mapsto u\} : C ?$

$$\frac{x:A \vdash t:B}{\vdash (\lambda x:A,t): \Pi x:A,B} \qquad \Pi x:A,B \downarrow_{\beta\mathcal{R}}^* \Pi x:A',B'} \\
\vdash (\lambda x:A,t): \Pi x:A',B' \qquad \vdash u:A' \\
\vdash (\lambda x:A,t)u:B'\{x \mapsto u\} \qquad B'\{x \mapsto u\} \downarrow_{\beta\mathcal{R}}^* C}$$

$$\vdash (\lambda x:A,t)u:C \qquad \downarrow$$

$$\vdash t\{x \mapsto u\}:C?$$

$$\frac{x:A \vdash t:B}{\vdash (\lambda x:A,t): \exists x:A,B} \qquad \exists x:A,B \downarrow_{\beta\mathcal{R}}^* \exists x:A',B'}{\qquad \qquad \vdash (\lambda x:A,t): \exists x:A',B'} \qquad \qquad \vdash u:A'} \\ \frac{\vdash (\lambda x:A,t): \exists x:A',B'}{\vdash (\lambda x:A,t)u:B'\{x\mapsto u\}} \qquad \qquad \vdash u:A'}{\qquad \qquad \vdash (\lambda x:A,t)u:C} \\ \downarrow \downarrow \\ \frac{x:A \vdash t:B \qquad u:A?}{\vdash t\{x\mapsto u\}:B\{x\mapsto u\}} \qquad B\{x\mapsto u\} \downarrow_{\beta\mathcal{R}}^* C? \\ \vdash t\{x\mapsto u\}:C$$

$$\mathsf{CR} \Rightarrow \mathsf{SR}_{\beta}$$

Outline

Decidability of type-checking (TC)

Subject-reduction for β (SR $_{eta}$)

Subject-reduction for rules (SR $_{\mathcal{R}}$)

Termination of $\hookrightarrow_{\beta\mathcal{R}}$ (SN)

Subject-reduction (SR) for a rule $I \hookrightarrow r$

Goal:
$$\forall \Gamma, \sigma, C, \Gamma \vdash I\sigma : C \Rightarrow \Gamma \vdash r\sigma : C$$
?

undecidable in $\lambda\Pi/\mathcal{R}$ [Saillard, 2015]

A first (not so good) idea

```
Goal: \forall \Gamma, \sigma, C, \Gamma \vdash I\sigma : C \Rightarrow \Gamma \vdash r\sigma : C?
```

there exists B such that I : B and r : B?

A first (not so good) idea

Goal:
$$\forall \Gamma, \sigma, C, \quad \Gamma \vdash I\sigma : C \Rightarrow \Gamma \vdash r\sigma : C$$
?

There exists B such that $I : B$ and $r : B$?

- \Rightarrow enforces many rules to be non-linear
- \Rightarrow rewriting is less efficient and confluence more difficult to prove

Example: tail function on vectors

Example: tail function on vectors

the LHS is not typable:

```
cons x p v has type V(s p)
but tail n expects an argument of type V(s n)
replacing p by n makes it typable but non-linear
```

Non-linearity breaks confluence on untyped terms

Assume that we have a rule $Dxx\hookrightarrow_{\mathcal{R}} E$ with E a constant Then, $\hookrightarrow_{\beta} \cup \hookrightarrow_{\mathcal{R}}$ is not confluent on untyped terms

Non-linearity breaks confluence on untyped terms

Assume that we have a rule $Dxx \hookrightarrow_{\mathcal{R}} E$ with E a constant

Then, $\hookrightarrow_{\beta} \cup \hookrightarrow_{\mathcal{R}}$ is not confluent on untyped terms

Take:
$$\begin{cases} F = \lambda c, \lambda a, Da(ca) \\ C = Y_F = (\lambda x, F(xx))(\lambda x, F(xx)) \hookrightarrow_{\beta} FC \\ A = Y_C = (\lambda x, C(xx))(\lambda x, C(xx)) \hookrightarrow_{\beta} CA \end{cases}$$

Then
$$A \hookrightarrow_{\beta} CA \hookrightarrow_{\beta} FCA \hookrightarrow_{\beta}^{2} DA(CA) \hookrightarrow_{\beta} D(CA)(CA) \hookrightarrow_{\mathcal{R}} E$$

Non-linearity breaks confluence on untyped terms

Assume that we have a rule $Dxx \hookrightarrow_{\mathcal{R}} E$ with E a constant Then, $\hookrightarrow_{\beta} \cup \hookrightarrow_{\mathcal{R}}$ is not confluent on untyped terms

Take:
$$\begin{cases} F = \lambda c, \lambda a, Da(ca) \\ C = Y_F = (\lambda x, F(xx))(\lambda x, F(xx)) \hookrightarrow_{\beta} FC \\ A = Y_C = (\lambda x, C(xx))(\lambda x, C(xx)) \hookrightarrow_{\beta} CA \end{cases}$$

Then $A \hookrightarrow_{\beta} CA \hookrightarrow_{\beta} FCA \hookrightarrow_{\beta}^{2} DA(CA) \hookrightarrow_{\beta} D(CA)(CA) \hookrightarrow_{\mathcal{R}} E$ and thus $A \hookrightarrow_{\beta} CA \hookrightarrow_{\beta}^{*} CE$ too but CE can never reduce to E ($CE \hookrightarrow_{\beta} FCE \hookrightarrow_{\beta}^{2} DE(CE) \hookrightarrow_{\beta} \dots$)

Example: tail function on vectors

```
\begin{tabular}{llll} symbol & V:N \to TYPE \\ symbol & nil:V0 \\ symbol & cons:A \to \Pi & n:N,V & n \to V(s & n) \\ \\ symbol & tail:\Pi & n:N,V(s & n) \to V & n \\ \end{tabular}
```

yet the rule preserves typing:

- let tail n (cons x p v) be a typable instance of the LHS
- by inversion of typing rules, we get:

• since V and s are undefined, $V(sp) \downarrow_{\beta \mathcal{R}}^* V(sn)$ implies $p \downarrow_{\beta \mathcal{R}}^* n$

Procedure for checking SR

Step 1: compute the equations \mathcal{E} that must be satisfied for the LHS to be of type C (fresh constant)

goal: prove that the RHS has type C modulo \mathcal{E} problem: how to type-check modulo equations?

Procedure for checking SR

Step 2: turn the equations into a convergent rewrite system ${\cal S}$ using Knuth-Bendix completion

Step 3: check that the RHS has type C in $\lambda\Pi/\mathcal{R}+\mathcal{S}$

Knuth-Bendix completion (1969)

Knuth-Bendix completion consists in turning a set of equations $\mathcal E$ into a terminating and eventually confluent set of rewrite rules ${\cal R}$ having the same equational theory by:

- turning an equation l = r into a rewrite rule $l \hookrightarrow r$ if l > r in some fixed reduction ordering >
- turning a non-confluent critical pair between two overlapping rule left hand-hides into a new equation

this may not terminate!

Take the equations:

1.
$$x + 0 = x$$
 2. $x + (sy) = s(x + y)$ 3. $(x + y) + z = x + (y + z)$

Take the equations:

1.
$$x + 0 = x$$
 2. $x + (sy) = s(x + y)$ 3. $(x + y) + z = x + (y + z)$

The lexicographic path ordering > with +>s>0 and comparison of arguments from right to left can orient all the equations from left to right:

1.
$$x + 0 \hookrightarrow x$$
 2. $x + (sy) \hookrightarrow s(x + y)$ 3. $(x + y) + z \hookrightarrow x + (y + z)$

Take the equations:

1.
$$x + 0 = x$$
 2. $x + (sy) = s(x + y)$ 3. $(x + y) + z = x + (y + z)$

The lexicographic path ordering > with +> s>0 and comparison of arguments from right to left can orient all the equations from left to right: $1.x + 0 \hookrightarrow x$ $2.x + (sy) \hookrightarrow s(x + y)$ $3.(x + y) + z \hookrightarrow x + (y + z)$

But there are critical pairs. How many?

Take the equations:

1.
$$x + 0 = x$$
 2. $x + (sy) = s(x + y)$ 3. $(x + y) + z = x + (y + z)$

The lexicographic path ordering > with +>s>0 and comparison of arguments from right to left can orient all the equations from left to right:

1.
$$x + 0 \hookrightarrow x$$
 2. $x + (sy) \hookrightarrow s(x + y)$ 3. $(x + y) + z \hookrightarrow x + (y + z)$

But there are critical pairs. How many? 5

- 1. x+z $_1 \leftarrow (x+0)+z \hookrightarrow_3 x+(0+z)$
- 2. $s(x+y)+z _2 \leftrightarrow (x+sy)+z \leftrightarrow_3 x+(sy+z)$
- 3. $(x+(y+z))+t _{3} \leftrightarrow ((x+y)+z)+t _{3} \leftrightarrow (x+y)+(z+t)$
- 4. $x + y \mapsto (x + y) + 0 \hookrightarrow_3 x + (y + 0)$
- 5. $s((x+y)+z) _2 \leftarrow (x+y)+sz \hookrightarrow_3 x+(y+sz)$

Are they confluent?

Example of Knuth-Bendix completion

Take the equations:

1.
$$x + 0 = x$$
 2. $x + (sy) = s(x + y)$ 3. $(x + y) + z = x + (y + z)$

The lexicographic path ordering > with +>s>0 and comparison of arguments from right to left can orient all the equations from left to right:

1.
$$x + 0 \hookrightarrow x$$
 2. $x + (sy) \hookrightarrow s(x + y)$ 3. $(x + y) + z \hookrightarrow x + (y + z)$

But there are critical pairs. How many? 5

- 1. $x + z \mapsto (x + 0) + z \hookrightarrow_3 x + (0 + z)$
- 2. $s(x+y)+z \xrightarrow{2} (x+sy)+z \xrightarrow{}_3 x+(sy+z)$
- 3. $(x+(y+z))+t _{3} \leftrightarrow ((x+y)+z)+t _{3} \leftrightarrow (x+y)+(z+t)$
- 4. $x + y _{1} \leftrightarrow (x + y) + 0 \hookrightarrow_{3} x + (y + 0)$
- 5. $s((x+y)+z) _2 \leftarrow (x+y)+sz \hookrightarrow_3 x+(y+sz)$

Are they confluent? Not 1, 2 and 3. This creates new equations:

4.
$$x + z = x + (0 + z)$$
 5. $s(x + y) + z = x + (sy + z)$...

Step 1: compute typability constraints ${\mathcal E}$ of the LHS

$$\underbrace{t}_{\text{term}} \uparrow \underbrace{\underbrace{A}_{\text{type}} \underbrace{[\mathcal{E}]}_{\text{equations}}}_{\text{equations}}$$

(var)
$$\frac{1}{y \uparrow \widehat{y}[\emptyset]}$$
 (\widehat{y} new constant for the unknown type of y)

(fun) $\frac{f: \Pi x_1: T_1, \dots, \Pi x_n: T_n, U \quad t_1 \uparrow A_1[\mathcal{E}_1] \quad t_n \uparrow A_n[\mathcal{E}_n]}{ft_1 \dots t_n \uparrow U\sigma[\mathcal{E}_1 \cup \dots \cup \mathcal{E}_n \cup \{A_1 = T_1\sigma, \dots, A_n = T_n\sigma\}]}$

where $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$

tail n (cons x p v)
$$\uparrow \widehat{\mathbf{n}} = \mathbf{N} \qquad \uparrow \widehat{\mathbf{x}} = \mathbf{A} \qquad \uparrow \widehat{\mathbf{p}} = \mathbf{N} \qquad \uparrow \widehat{\mathbf{v}} = \mathbf{V} \mathbf{p}$$

$$\uparrow \mathbf{V} \mathbf{n} \qquad \uparrow \mathbf{V} \mathbf{n}$$

Step 2: turn ${\mathcal E}$ into a convergent rewrite system ${\mathcal S}$

using Knuth-Bendix completion procedure (KB) with any well-founded order total on ground terms (e.g. LPO) remark: KB always terminates on ground equations in this case

$$\underline{\mathsf{example:}} \quad \widehat{\mathtt{x}} > \widehat{\mathtt{v}} > \widehat{\mathtt{p}} > \widehat{\mathtt{n}} > \mathtt{V} > \mathtt{T} > \mathtt{N} > \mathtt{s} > \mathtt{p} > \mathtt{n}$$

 $\begin{array}{lll} \mathcal{E}: & \widehat{\mathbf{x}} = \mathbf{A} & \widehat{\mathbf{p}} = \mathbf{N} & \widehat{\mathbf{v}} = \mathbf{V} \, \mathbf{p} & \widehat{\mathbf{n}} = \mathbf{N} & \mathbf{V}(\mathbf{s} \, \mathbf{p}) = \mathbf{V}(\mathbf{s} \, \mathbf{n}) \\ \mathcal{S}: & \widehat{\mathbf{x}} \hookrightarrow \mathbf{A} & \widehat{\mathbf{p}} \hookrightarrow \mathbf{N} & \widehat{\mathbf{v}} \hookrightarrow \mathbf{V} \, \mathbf{p} & \widehat{\mathbf{n}} \hookrightarrow \mathbf{N} & \mathbf{V}(\mathbf{s} \, \mathbf{p}) \hookrightarrow \mathbf{V}(\mathbf{s} \, \mathbf{n}) \end{array}$

Step 3: check that RHS has same type as LHS modulo ${\cal S}$

$$\underbrace{\begin{array}{c} \text{tail} \quad \underbrace{n}_{\uparrow \widehat{n} = \mathbb{N}} \left(\underbrace{\text{cons} \quad \underbrace{x}_{\uparrow \widehat{p} = \mathbb{N}} \quad \underbrace{v}_{\uparrow \widehat{v} = \mathbb{V} p} \right) \quad \hookrightarrow \quad \text{v}}_{\uparrow \mathbb{V}(\text{sp}) = \mathbb{V}(\text{sn})} \\ \underbrace{\phantom{\begin{array}{c} \uparrow \widehat{n} = \mathbb{N} \\ \uparrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\uparrow \mathbb{V} n} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \uparrow \widehat{v} = \mathbb{N} \\ \uparrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\uparrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \uparrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\uparrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\uparrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\uparrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\uparrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\uparrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\uparrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\uparrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\uparrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\uparrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\uparrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\uparrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N} \\ \hline \end{array}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N}}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N}}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N}}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N}}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N}}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N}}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N}}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N}}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N}}}_{\downarrow \widehat{v} = \mathbb{N}}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N}}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \\ \downarrow \widehat{v} = \mathbb{N}}}_{\downarrow \widehat{v} = \mathbb{N}} \underbrace{\phantom{\begin{array}{c} \downarrow \widehat{v} =$$

$$\mathcal{S}: \ \widehat{\textbf{x}} \hookrightarrow \textbf{A} \ \widehat{\textbf{p}} \hookrightarrow \textbf{N} \ \widehat{\textbf{v}} \hookrightarrow \textbf{V} \, \textbf{p} \ \widehat{\textbf{n}} \hookrightarrow \textbf{N} \ \textbf{V}(\textbf{s} \, \textbf{p}) \hookrightarrow \textbf{V}(\textbf{s} \, \textbf{n})$$

we now want to check if

Step 3: check that RHS has same type as LHS modulo ${\cal S}$

$$\mathcal{S}: \ \widehat{\textbf{x}} \hookrightarrow \textbf{A} \ \widehat{\textbf{p}} \hookrightarrow \textbf{N} \ \widehat{\textbf{v}} \hookrightarrow \textbf{Vp} \ \widehat{\textbf{n}} \hookrightarrow \textbf{N} \ \textbf{V(sp)} \hookrightarrow \textbf{V(sn)}$$

we now want to check if

no it doesn't work since $\mathbf{v}:\widehat{\mathbf{v}}$ and $\widehat{\mathbf{v}}$ $\not\downarrow_{\mathcal{BRS}}^* \mathbf{V}\,\mathbf{n}$

Step 1': simplify equations using confluence of $\hookrightarrow_{\beta\mathcal{R}}$

$$\mathcal{E}: \widehat{\mathbf{x}} = \mathbf{A} \ \widehat{\mathbf{p}} = \mathbf{N} \ \widehat{\mathbf{v}} = \mathbf{V}\mathbf{p} \ \widehat{\mathbf{n}} = \mathbf{N} \ \mathbf{V}(\mathbf{s}\,\mathbf{p}) = \mathbf{V}(\mathbf{s}\,\mathbf{n})$$

because V and s are undefined, hence injective, \mathcal{E} is equivalent to:

$$\mathcal{E}'$$
: $\widehat{\mathbf{x}} = \mathbf{A}$ $\widehat{\mathbf{p}} = \mathbf{N}$ $\widehat{\mathbf{v}} = \mathbf{V} \mathbf{p}$ $\widehat{\mathbf{n}} = \mathbf{N}$ $\mathbf{p} = \mathbf{n}$

step 3 (KB) with
$$\hat{x} > \hat{v} > \hat{p} > \hat{n} > V > T > N > s > p > n$$
:

$$\mathcal{S}': \ \widehat{x} \hookrightarrow A \ \widehat{p} \hookrightarrow N \ \widehat{v} \hookrightarrow V n \ \widehat{n} \hookrightarrow N \ p \hookrightarrow n$$

Step 3: check that RHS has same type as LHS modulo ${\cal S}$

$$\mathcal{S}': \ \widehat{\mathtt{x}} \hookrightarrow \mathtt{A} \ \widehat{\mathtt{p}} \hookrightarrow \mathtt{N} \ \widehat{\mathtt{v}} \hookrightarrow \mathtt{Vn} \ \widehat{\mathtt{n}} \hookrightarrow \mathtt{N} \ \mathtt{p} \hookrightarrow \mathtt{n}$$

we want to check if

$$v: Vn modulo S'$$
?

now it works since $v : \widehat{v}$ and $\widehat{v} \hookrightarrow Vn$

Conclusion: procedure for $SR(I \hookrightarrow r)$

A procedure to prove that a rewrite rule preserves typing in $\lambda \Pi / \mathcal{R}$:

- Step 1: compute the equations $\mathcal E$ that must be satisfied for the LHS to be of type $\mathcal C$ (fresh constant)
- Step 2: simplify equations using confluence of $\hookrightarrow_{\beta\mathcal{R}}$
- Step 3: turn the equations into a convergent rewrite system \mathcal{S} using Knuth-Bendix completion
- Step 4: check that the RHS has type C in some sub-system of $\lambda\Pi/\mathcal{R}+\mathcal{S}$

$$\mathsf{CR} + \mathsf{TC}^- \Rightarrow \mathsf{SR}_{\mathcal{R}}$$

problem: confluence and termination of $\hookrightarrow_{\beta\mathcal{R}} \cup \hookrightarrow_{\mathcal{S}}$?

Outline

Decidability of type-checking (TC)

Subject-reduction for β (SR $_{\beta}$)

Subject-reduction for rules (SR_R)

Termination of $\hookrightarrow_{\beta\mathcal{R}}$ (SN)

Theorem: for all Γ , t, A, if $\Gamma \vdash t : A$ then t is SN.

Proof. By induction on the definition of \vdash .

$$(\mathsf{app}) \ \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_v^u} \quad \Rightarrow \quad \frac{t \ \mathsf{SN} \quad u \ \mathsf{SN}}{tu \ \mathsf{SN}?}$$

Theorem: for all Γ , t, A, if $\Gamma \vdash t : A$ then t is SN.

Proof. By induction on the definition of \vdash .

$$(\mathsf{app}) \ \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_x^u} \quad \Rightarrow \quad \frac{t \ \mathsf{SN} \quad u \ \mathsf{SN}}{tu \ \mathsf{SN}?}$$

Can't we take $t = u = \lambda x : A, xx$?

Theorem: for all Γ , t, A, if $\Gamma \vdash t$: A then t is SN.

Proof. By induction on the definition of \vdash .

$$(\mathsf{app}) \ \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_x^u} \quad \Rightarrow \quad \frac{t \ \mathsf{SN} \quad u \ \mathsf{SN}}{tu \ \mathsf{SN}?}$$

Can't we take $t = u = \lambda x : A, xx$? No, t is not typable. But can't we find a similar example that is typable?

Theorem: for all Γ , t, A, if $\Gamma \vdash t : A$ then t is SN.

Proof. By induction on the definition of \vdash .

$$(\mathsf{app}) \ \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_x^u} \quad \Rightarrow \quad \frac{t \ \mathsf{SN} \quad u \ \mathsf{SN}}{tu \ \mathsf{SN}?}$$

Can't we take $t = u = \lambda x : A, xx$? No, t is not typable. But can't we find a similar example that is typable?

$$\Sigma = A : \text{TYPE}, c : (A \to A) \to A, f : A \to (A \to A)$$

 $\mathcal{R} = \{f(cx) \hookrightarrow x\}$
 $t = \lambda x : A, fxx$
 $u = ct$

Then $tu \hookrightarrow_{\beta} f(ct)(ct) \hookrightarrow_{\mathcal{R}} tu$

Conclusion: to prove the termination of an application, the termination of the function and of the argument is not enough

We need to prove a stronger property, **super-termination**: a term $t: \Pi x: A, B$ is super-terminating if, for all super-terminating argument u: A, $tu: B_x^u$ is super-terminating

As a consequence, we need to:

- interpret each type A by a set $[\![A]\!]$ of super-terminating terms
- prove that $t: A \Rightarrow t \in \llbracket A \rrbracket$

remark: super-termination is more usually called convertibility (Tait), reducibility (Girard) or computability (Stenlund)

Let \mathcal{T} be the set of terms.

Is it well defined?

Let \mathcal{T} be the set of terms.

Is it well defined?

Yes. By **Markowsky fixpoint theorem** (1976): every monotone function F on a chain-complete poset (every totally ordered subset has a lub) has a least fixpoint.

- The set $\mathcal{I} = \mathcal{F}_p(\mathcal{T}, \mathcal{P}(\mathcal{T}))$ of partial functions from \mathcal{T} to its powerset is chain-complete wrt function extension \subseteq .
- The function $F: \mathcal{I} \to \mathcal{I}$ such that

$$F(I)(T) = \begin{cases} \{t \in T \mid \forall u \in I(A), tu \in I(B_x^u)\} \text{ if } T = \Pi x : A, B \\ \text{SN otherwise} \end{cases}$$

$$f(T)(T) = \begin{cases} \{t \in T \mid \forall u \in I(A), tu \in I(B_x^u)\} \text{ if } T = \Pi x : A, B \\ \text{SN otherwise} \end{cases}$$

 $dom(F(I)) = \{T \mid T = \Pi x : A, B \Rightarrow A \in dom(I) \land \forall u \in I(A), B_x^u \in dom(I)\}$ is monotone

Let \mathcal{T} be the set of terms.

Does super-termination imply termination: $[\![T]\!] \subseteq SN$?

Let \mathcal{T} be the set of terms.

Does super-termination imply termination: $\llbracket T \rrbracket \subseteq SN$?

Yes, if $[\![A]\!] \neq \emptyset$ whenever $T = \Pi x : A, B$.

Do we have $[T] \neq \emptyset$?

Let \mathcal{T} be the set of terms.

Does super-termination imply termination: $[T] \subseteq SN$?

Yes, if $[\![A]\!] \neq \emptyset$ whenever $T = \Pi x : A, B$.

Do we have $[T] \neq \emptyset$?

Yes: for all T, $\{xu_1 \dots u_n \mid x \in Var, u_1, \dots, u_n \in SN\} \subseteq \llbracket T \rrbracket$

Theorem: for all Γ , t, A, if $\Gamma \vdash t : A$ then $t \in \llbracket A \rrbracket$.

Proof. By induction on the definition of \vdash .

$$(\mathsf{app}) \ \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_x^u} \Rightarrow \frac{t \in \llbracket \Pi x : A, B \rrbracket \quad u \in \llbracket A \rrbracket}{tu \in \llbracket B_x^u \rrbracket ?}$$

Theorem: for all Γ , t, A, if $\Gamma \vdash t : A$ then $t \in \llbracket A \rrbracket$.

Proof. By induction on the definition of \vdash .

$$\begin{aligned} & (\mathsf{app}) \ \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_x^u} \Rightarrow \frac{t \in \llbracket \Pi x : A, B \rrbracket \quad u \in \llbracket A \rrbracket}{tu \in \llbracket B_x^u \rrbracket ?} \\ & (\mathsf{abs}) \ \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A, t : \Pi x : A, B} \Rightarrow \frac{t \in \llbracket B \rrbracket}{\lambda x : A, t \in \llbracket \Pi x : A, B \rrbracket ?} \end{aligned}$$

$$\forall u \in \llbracket A \rrbracket, (\lambda x : A, t) u \in \llbracket B_x^u \rrbracket?$$

Theorem: for all Γ , t, A, if $\Gamma \vdash t : A$ then $t \in [\![A]\!]$.

Proof. By induction on the definition of \vdash .

(app)
$$\frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_{x}^{u}} \Rightarrow \frac{t \in \llbracket \Pi x : A, B \rrbracket \quad u \in \llbracket A \rrbracket}{tu \in \llbracket B_{x}^{u} \rrbracket ?}$$
(abs)
$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A, t : \Pi x : A, B} \Rightarrow \frac{t \in \llbracket \Pi x : A, B \rrbracket}{\lambda x : A, t \in \llbracket \Pi x : A, B \rrbracket ?}$$

$$\forall u \in \llbracket A \rrbracket, (\lambda x : A, t) u \in \llbracket B_{x}^{u} \rrbracket ?$$

A term is **neutral** if it is neither an abstraction nor a partially applied function symbol. Examples: $(\lambda x : A, t)u$ and t + u.

Lemma: a neutral term is super-terminating if all its reducts are super-terminating.

Proof. Since t is neutral, tu is not reducible at the top and $\hookrightarrow (tu) = \hookrightarrow (t)u \cup t \hookrightarrow (u)$.

Theorem: for all Γ , t, A, if $\Gamma \vdash t : A$ then $t \in \llbracket A \rrbracket$.

Proof. By induction on the definition of \vdash .

$$\text{(app)} \ \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_x^u} \Rightarrow \frac{t \in \llbracket \Pi x : A, B \rrbracket \quad u \in \llbracket A \rrbracket}{tu \in \llbracket B_x^u \rrbracket ?}$$

$$\text{(abs)} \ \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A, t : \Pi x : A, B} \Rightarrow \frac{t \in \llbracket B \rrbracket}{\lambda x : A, t \in \llbracket \Pi x : A, B \rrbracket ?}$$

$$\forall u \in \llbracket A \rrbracket, (\lambda x : A, t)u \in \llbracket B_x^u \rrbracket?$$

$$\forall u \in \llbracket A \rrbracket, t_x^u \in \llbracket B_x^u \rrbracket?$$

Theorem: for all Γ , t, A, if $\Gamma \vdash t : A$ then $t \in [\![A]\!]$.

Proof. By induction on the definition of \vdash .

$$\begin{aligned} \text{(app)} & \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_x^u} \Rightarrow \frac{t \in \llbracket \Pi x : A, B \rrbracket \quad u \in \llbracket A \rrbracket}{tu \in \llbracket B_x^u \rrbracket ?} \\ \text{(abs)} & \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A, t : \Pi x : A, B} \Rightarrow \frac{t \in \llbracket \Pi x : A, B \rrbracket}{\lambda x : A, t \in \llbracket \Pi x : A, B \rrbracket ?} \\ & \forall u \in \llbracket A \rrbracket, (\lambda x : A, t) u \in \llbracket B_x^u \rrbracket ? \\ & \forall u \in \llbracket A \rrbracket, t_x^u \in \llbracket B_x^u \rrbracket ? \end{aligned}$$

We need to generalize the theorem again:

A substitution σ is super-terminating wrt Γ , written $\sigma \models \Gamma$, if, for all $(x, A) \in \Gamma$, $x\sigma \in \llbracket A\sigma \rrbracket$.

Theorem: for all Γ, t, A, σ , if $\Gamma \vdash t : A$ and $\sigma \models \Gamma$ then $t\sigma \in \llbracket A\sigma \rrbracket$.

Theorem: for all Γ, t, A, σ , if $\Gamma \vdash t : A$ and $\sigma \models \Gamma$ then $t\sigma \in \llbracket A\sigma \rrbracket$.

Proof. By induction on the definition of \vdash .

$$(\mathsf{app}) \ \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B^u_x} \Rightarrow \frac{t\sigma \in \llbracket \Pi x : A\sigma, B\sigma \rrbracket \quad u\sigma \in \llbracket A\sigma \rrbracket}{(tu)\sigma \in \llbracket B^u_x\sigma \rrbracket ?}$$

Yes since $B_x^u \sigma = B \sigma_x^{u\sigma}$.

Theorem: for all Γ , t, A, σ , if $\Gamma \vdash t : A$ and $\sigma \models \Gamma$ then $t \in \llbracket A\sigma \rrbracket$.

Proof. By induction on the definition of \vdash .

(app)
$$\frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_{x}^{u}} \Rightarrow \frac{t\sigma \in \llbracket \Pi x : A\sigma, B\sigma \rrbracket \quad u\sigma \in \llbracket A\sigma \rrbracket}{(tu)\sigma \in \llbracket B_{x}^{u}\sigma \rrbracket ?}$$

$$(abs) \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A, t : \Pi x : A, B} \Rightarrow \frac{t\sigma_{x}^{u} \in \llbracket B\sigma_{x}^{u} \rrbracket}{\lambda x : A\sigma, t\sigma \in \llbracket \Pi x : A\sigma, B\sigma \rrbracket ?}$$

$$\forall u \in \llbracket A\sigma \rrbracket , (\lambda x : A\sigma, t\sigma)u \in \llbracket B\sigma_{x}^{u} \rrbracket$$

$$\forall u \in \llbracket A\sigma \rrbracket, (\lambda x : A\sigma, t\sigma)u \in \llbracket B\sigma_x^u \rrbracket$$
?

$$\forall u \in \llbracket A\sigma \rrbracket, t\sigma_x^u \in \llbracket B\sigma_x^u \rrbracket$$
?

Theorem: for all Γ, t, A, σ , if $\Gamma \vdash t : A$ and $\sigma \models \Gamma$ then $t \in \llbracket A\sigma \rrbracket$.

Proof. By induction on the definition of
$$\vdash$$
.

(app)
$$\frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_x^u} \Rightarrow \frac{t\sigma \in \llbracket \Pi x : A\sigma, B\sigma \rrbracket \quad u\sigma \in \llbracket A\sigma \rrbracket}{(tu)\sigma \in \llbracket B_x^u\sigma \rrbracket ?}$$

(abs)
$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A, t : \Pi x : A, B} \Rightarrow \frac{t\sigma_x^u \in \llbracket B\sigma_x^u \rrbracket}{\lambda x : A\sigma, t\sigma \in \llbracket \Pi x : A\sigma, B\sigma \rrbracket ?}$$

(conv)
$$\frac{\Gamma \vdash t : A \quad \Gamma \vdash A : s \quad A \downarrow_{\beta\mathcal{R}} B \quad \Gamma \vdash B : s}{\Gamma \vdash t : B} \Rightarrow \frac{t\sigma \in \llbracket A\sigma \rrbracket}{t\sigma \in \llbracket B\sigma \rrbracket ?}$$

Theorem: for all Γ, t, A, σ , if $\Gamma \vdash t : A$ and $\sigma \models \Gamma$ then $t \in \llbracket A\sigma \rrbracket$.

Proof. By induction on the definition of \vdash .

(app)
$$\frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_{x}^{u}} \Rightarrow \frac{t\sigma \in \llbracket \Pi x : A\sigma, B\sigma \rrbracket \quad u\sigma \in \llbracket A\sigma \rrbracket}{(tu)\sigma \in \llbracket B_{x}^{u}\sigma \rrbracket ?}$$

$$(abs) \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A, t : \Pi x : A, B} \Rightarrow \frac{t\sigma_{x}^{u} \in \llbracket B\sigma_{x}^{u} \rrbracket}{\lambda x : A\sigma, t\sigma \in \llbracket \Pi x : A\sigma, B\sigma \rrbracket ?}$$

$$(conv) \frac{\Gamma \vdash t : A \quad \Gamma \vdash A : s \quad A \downarrow_{\beta\mathcal{R}} B \quad \Gamma \vdash B : s}{\Gamma \vdash t : B} \Rightarrow \frac{t\sigma \in \llbracket A\sigma \rrbracket}{t\sigma \in \llbracket B\sigma \rrbracket ?}$$

No, we need $\llbracket \ \rrbracket$ to be invariant by $\downarrow_{\beta\mathcal{R}}$.

Definition of super-termination (2nd attempt) assuming that $\hookrightarrow_{\beta \mathcal{R}}$ is locally-confluent (LCR)

Let \mathcal{T} be the set of terms.

$$\llbracket T \rrbracket = \left\{ \begin{array}{l} \{t \in \mathcal{T} \mid \forall u \in \llbracket A \rrbracket, tu \in \llbracket B_x^u \rrbracket \} \text{ if } T \in \mathit{SN} \land \mathit{nf}(T) = \Pi x : A, B \\ \mathsf{SN} \text{ otherwise} \end{array} \right.$$

Theorem: for all Γ , t, A, if $\Gamma \vdash t : A$ then $t \in \llbracket A \rrbracket$.

Proof. By induction on the definition of \vdash .

$$(\text{conv}) \frac{\Gamma \vdash t : A \quad \Gamma \vdash A : s \quad A \downarrow_{\beta \mathcal{R}} B \quad \Gamma \vdash B : s}{\Gamma \vdash t : B} \Rightarrow \frac{t\sigma \in \llbracket A\sigma \rrbracket}{t\sigma \in \llbracket B\sigma \rrbracket?}$$

Theorem: for all Γ , t, A, if $\Gamma \vdash t : A$ then $t \in \llbracket A \rrbracket$.

Proof. By induction on the definition of \vdash .

$$(\mathsf{app}) \ \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_x^u} \Rightarrow \frac{t\sigma \in \llbracket \Pi x : A\sigma, B\sigma \rrbracket \quad u\sigma \in \llbracket A\sigma \rrbracket}{(tu)\sigma \in \llbracket B_x^u\sigma \rrbracket ?}$$
$$(\mathsf{abs}) \ \frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A, t : \Pi x : A, B} \Rightarrow \frac{t\sigma_x^u \in \llbracket B\sigma_x^u \rrbracket}{\lambda x : A\sigma, t\sigma \in \llbracket \Pi x : A\sigma, B\sigma \rrbracket ?}$$

$$(\mathsf{conv}) \ \frac{\Gamma \vdash t : A \quad \Gamma \vdash A : s \quad A \downarrow_{\beta\mathcal{R}} B \quad \Gamma \vdash B : s}{\Gamma \vdash t : B} \Rightarrow \frac{t\sigma \in \llbracket A\sigma \rrbracket}{t\sigma \in \llbracket B\sigma \rrbracket?}$$

Yes because $A\sigma \in SN$, $B\sigma \in SN$ and $nf(A\sigma) = nf(B\sigma)$.

Theorem: for all Γ , t, A, if $\Gamma \vdash t : A$ then $t \in \llbracket A \rrbracket$.

Proof. By induction on the definition of \vdash .

$$(\mathsf{app}) \ \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_x^u} \Rightarrow \frac{t\sigma \in \llbracket \Pi x : A\sigma, B\sigma \rrbracket \quad u\sigma \in \llbracket A\sigma \rrbracket}{(tu)\sigma \in \llbracket B_x^u\sigma \rrbracket?}$$

(abs)
$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A, t : \Pi x : A, B} \Rightarrow \frac{t\sigma_x^u \in \llbracket B\sigma_x^u \rrbracket}{\lambda x : A\sigma, t\sigma \in \llbracket \Pi x : A\sigma, B\sigma \rrbracket ?}$$

$$(\mathsf{conv}) \ \frac{\Gamma \vdash t : A \quad \Gamma \vdash A : s \quad A \downarrow_{\beta\mathcal{R}} B \quad \Gamma \vdash B : s}{\Gamma \vdash t : B} \Rightarrow \frac{t\sigma \in \llbracket A\sigma \rrbracket}{t\sigma \in \llbracket B\sigma \rrbracket?}$$

$$(\operatorname{sig}) \frac{f : A \in \Sigma \quad \vdash A : s}{\vdash f : A} \Rightarrow f \in \llbracket A \rrbracket?$$

Theorem: for all Γ , t, A, if $\Gamma \vdash t : A$ then $t \in \llbracket A \rrbracket$.

Proof. By induction on the definition of \vdash .

$$(\mathsf{app}) \ \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash tu : B_x^u} \Rightarrow \frac{t\sigma \in \llbracket \Pi x : A\sigma, B\sigma \rrbracket \quad u\sigma \in \llbracket A\sigma \rrbracket}{(tu)\sigma \in \llbracket B_x^u\sigma \rrbracket ?}$$

(abs)
$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A, t : \Pi x : A, B} \Rightarrow \frac{t\sigma_x^u \in \llbracket B\sigma_x^u \rrbracket}{\lambda x : A\sigma, t\sigma \in \llbracket \Pi x : A\sigma, B\sigma \rrbracket ?}$$

$$(\mathsf{conv}) \ \frac{\Gamma \vdash t : A \quad \Gamma \vdash A : s \quad A \downarrow_{\beta\mathcal{R}} B \quad \Gamma \vdash B : s}{\Gamma \vdash t : B} \Rightarrow \frac{t\sigma \in \llbracket A\sigma \rrbracket}{t\sigma \in \llbracket B\sigma \rrbracket?}$$

(sig)
$$\frac{f: A \in \Sigma \vdash A: s}{\vdash f: A} \Rightarrow f \in [A]$$
?

to prove the super-termination of function symbols, we can use dependency pairs

Dependency pairs on first-order terms

dependency pairs: $fl_1 \dots l_i > gm_1 \dots m_j$ iff $fl_1 \dots l_i \hookrightarrow r \in \mathcal{R}$, $gm_1 \dots m_j$ is a subterm of $r, m_1 \dots m_j$ are all the arguments to which g is applied, and g is defined.

chain relation on terms $ft_1 \dots t_i$ with t_1, \dots, t_i terminating:

$$\frac{t_1 \hookrightarrow^* l_1 \sigma \quad \dots \quad t_i \hookrightarrow^* l_i \sigma \quad fl_1 \dots l_i > gm_1 \dots m_j}{ft_1 \dots t_i \stackrel{\sim}{>} gm_1 \sigma \dots m_j \sigma}$$

Theorem (Arts & Giesl 2000, reformulated): function symbols are super-terminating if $\tilde{>}$ terminates

Dependency pairs in $\lambda\Pi/\mathcal{R}$

dependency pairs: idem

chain relation on terms $ft_1 \dots t_i$ with t_1, \dots, t_i super-terminating:

$$\frac{t_1 \hookrightarrow^* l_1 \sigma \quad \dots \quad t_i \hookrightarrow^* l_i \sigma \quad fl_1 \dots l_i > gm_1 \dots m_j}{ft_1 \dots t_i \underbrace{t_{i+1} \dots t_p} \tilde{} gm_1 \sigma \dots m_j \sigma \underbrace{u_{j+1} \dots u_q}}$$

Theorem: function symbols are super-terminating if $\tilde{>}$ terminates and the theory (Σ, \mathcal{R}) is well-structured and accessible

Well-structured theory

a theory (Σ, \mathcal{R}) is **well-structured** if:

• the strict part of the dependency relation $f \succeq g$ if g occurs in the type of f or in a right hand-side of a rule of f is well-founded (always true when Σ is finite)

Well-structured theory

a theory (Σ, \mathcal{R}) is **well-structured** if:

- the strict part of the dependency relation f ≥ g if g occurs in the type of f or in a right hand-side of a rule of f is well-founded (always true when Σ is finite)
- for every rule $fl_1 ... l_n \hookrightarrow r \in \mathcal{R}$ with $f : \Pi x_1 : A_1, ..., \Pi x_n : A_n, B$, there is a typing environment Δ such that:

$$\Delta \vdash_{fl_1...l_n} r : B_{x_1}^{l_1} \ldots_{x_n}^{l_n}$$

where $\vdash_{\mathit{fl}_1...\mathit{l}_n}$ is similar to \vdash except that types can only be typed using symbols $\prec f$

Accessible theory

a well-structured theory (Σ, \mathcal{R}) is **accessible** if, for every rule $fl_1 \dots l_n \hookrightarrow r \in \mathcal{R}$, with $f: \Pi x_1 : A_1, \dots, \Pi x_n : A_n, B$,

$$\sigma \models \Delta$$
 whenever $\frac{l_1}{x_1} \dots \frac{l_n}{x_n} \sigma \models x_1 : A_1, \dots, x_n : A_n$

(matching preserves super-termination)

example of non-accessible pattern:

$$cy$$
 with $c:(A \rightarrow B) \rightarrow A$

$$c(\lambda x, xx) \in \llbracket A \rrbracket = SN \text{ but } \lambda x, xx \notin \llbracket A \to B \rrbracket$$

Termination of the chain relation $\tilde{>}$

there exist various techniques for proving the termination of a chain relation for first or simply-typed higher-order rewriting

a simple one is size-change termination (SCT)

Theorem: $\tilde{>}$ terminates if Σ is finite and, in the transitive closure of the graph on Σ having, for each dp $fl_1 \ldots l_p > gm_1 \ldots m_q$, an edge from f to g labeled by the matrix $(a_{ij})_{i \leq p, j \leq q}$ with

$$a_{ij} = \begin{cases} -1 & \text{if } I_i \rhd m_j \\ 0 & \text{if } I_i = m_j \\ +\infty & \text{otherwise} \end{cases}$$

all idempotent matrices labeling a loop has some -1 on the diagonal

Conclusion for termination

 $LCR + TC^- \Rightarrow SN$

Dependencies between properties

- - → for dependency on a sub-system