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Abstract. In a previous work, we proved that an important part of the Calculus of Inductive Con-
structions (CIC), the basis of the Coq proof assistant, can be seen as a Calculus of Algebraic Con-
structions (CAC), an extension of the Calculus of Constructions with functions and predicates de-
fined by higher-order rewrite rules. In this paper, we prove that almost all CIC can be seen as a
CAC, and that it can be further extended with non-strictly positive types and inductive-recursive
types together with non-free constructors and pattern-matching on defined symbols.

1. Introduction

There has been different proposals for defining inductive types1 and functions in typed systems. In
Girard’s polymorphic λ-calculus or in the Calculus of Constructions (CC) [10], data types and functions
can be formalized by using impredicative encodings, difficult to use in practice, and computations are
done by β-reduction only. In Martin-Löf’s type theory or in the Calculus of Inductive Constructions
(CIC) [11], inductive types and their induction principles are first-class objects, functions can be defined
by induction and computations are done by ι-reduction, the rules for cut-elimination in inductive proofs.
For instance, for the type nat of natural numbers, the recursor2 rec : (P : nat ⇒ ?)(u : P0)(v : (n :
nat) Pn⇒ P (sn))(n : nat)Pn is defined by the following ι-rules:

rec P u v 0 →ι u

rec P u v (s n) →ι v n (rec P u v n)

Finally, in the algebraic setting [12], functions are defined by using rewrite rules and computations
are done by applying these rules. Since both β-reduction and ι-reduction are particular cases of higher-
order rewriting [18], proposals soon appeared for integrating all these approaches. Starting with [16, 2],
1All over the paper, by “inductive types”, we also mean inductively defined predicates or families of types.
2(x : T )P is a usual type-theoretic notation for the dependent product or universal quantification “for all x of type T , P ”.
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this objective culminated with [4, 5, 6] in which an important part of CIC (described in [5]) can be seen as
a Calculus of Algebraic Constructions (CAC), an extension of CC with functions and predicates defined
by higher-order rewrite rules. In this paper, we go one step further in this direction, capture almost all
CIC and extend it with non-strictly positive inductive types and inductive recursive types [13].

Let us see two examples of recursors that are allowed in CIC but not in CAC [26]. The first example
is a third-order definition of finite sets of natural numbers (represented as predicates over nat):

fin : (nat⇒ ?)⇒ ?

empty : fin([y : nat]⊥)
add : (x : nat)(p : nat⇒ ?)fin p⇒ fin([y : nat]y = x ∨ (p y))
rec : (Q : (nat⇒ ?)⇒ ?)Q([y : nat]⊥)

⇒ ((x : nat)(p : nat⇒ ?)fin p⇒ Qp⇒ Q([y : nat]y = x ∨ (p y)))
⇒ (p : nat⇒ ?)fin p⇒ Qp

where ⊥ is the false proposition and the weak recursor rec, i.e. the recursor for defining objects, is
defined by the rules:

rec Q u v p′ empty → u

rec Q u v p′ (add x p h) → v x p h (rec Q u v p h)

The problem comes from the fact that, in the output type of add , fin([y : nat]y = x ∨ (p y)), the
predicate p is not parameter of fin . This is why the corresponding strong recursor, i.e. the recursor
for defining types or predicates, is not allowed in CIC (p could be “bigger” than fin) [9]. This can be
generalized to any big/impredicative dependent type, that is, to any type having a constructor with a
predicate argument which is not a parameter. Formally, this condition, called (I6) in [6], safeness in [29]
and ?-dependency for constructors in [31], can be stated as follows:

Definition 1.1. (I6)
If C : (~z : ~V )? is a type and c : (~x : ~T )C~v is a constructor of C then, for all predicate variable x
occurring in some Tj , there is some argument vιx = x.

The second example is John Major’s equality which is intended to equal terms of different types [20]:

JMeq : (A : ?)A⇒ (B : ?)B ⇒ ?

refl : (C : ?)(x : C)(JMeq C x C x)
rec : (A : ?)(x : A)(P : (B : ?)B ⇒ ?)(P A x)

⇒ (B : ?)(y : B)(JMeq A x B y)⇒ (P B y)

where rec is defined by the rule:

rec C x P h C x (refl C x) → h
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Here, the problem comes from the fact that, in the output type of refl , the argument for B is equal to the
argument for A. This can be generalized to any polymorphic type having a constructor with two equal
type parameters. From a rewriting point of view, this is like having pattern-matching or non-linearities on
predicate arguments, which is known to create inconsistencies in some cases [15]. A similar restriction
called ?-dependency for function symbols also appears in [31].

Definition 1.2. (Safeness)
A rule f~l→ r with f : (~x : ~T )U is safe if:

– for all predicate argument xi, li is a variable,
– if xi and xj are two distinct predicate arguments, then li 6= lj .

An inductive type is safe if the corresponding ι-rules are safe.

By using what is called in Matthes’ terminology [19] an elimination-based interpretation instead of
the introduction-based interpretation that we used in [6], we prove that weak recursors for types like
fin or JMeq can be accepted, hence that CAC subsumes CIC almost completely. The only condition we
could not get rid of is the safeness condition for predicate-level rewrite rules. So, we do not accept strong
elimination on JMeq (strong elimination for fin is allowed neither in CIC nor in CAC [9]). On the other
hand, we prove that CAC and CIC can be easily extended to non-strictly positive types (Section 8) and
to inductive-recursive types (Section 9) [13].

2. The Calculus of Inductive Constructions (CIC)

We assume the reader familiar with typed λ-calculi [3]. In this section, we present CIC as defined in [32].
In order to type the strong elimination schema in a polymorphic way, which is not possible in CC, Werner
uses a slightly more general Pure Type System (PTS) [3]. CC is the PTS with the sorts S = {?,2}, the
axioms A = {(?,2)} and the rules B = {(s1, s2, s3) ∈ S3 | s2 = s3}. Werner extends it by adding the
sort4, the axiom (2,4) and the rules (?,4,4) and (2,4,4). In fact, he denotes ? by Set, 2 by Type
and 4 by Extern. The sort ? denotes the universe of types and propositions, and the sort 2 denotes the
universe of predicate types (also called kinds). For instance, the type nat of natural numbers is of type
?, ? itself is of type 2 and nat ⇒ ?, the type of predicates over nat, is of type 2. Then, Werner adds
terms for representing inductive types, their constructors and the definitions by recursion on these types:

• Inductive types. An inductive type is denoted by I = Ind(X : A){~C} where ~C is an ordered se-
quence of terms for the types of the constructors of I . For instance, Nat = Ind(X : ?){X,X ⇒ X}
represents the type of natural numbers (in fact, any type isomorphic to the type of natural numbers).
The term A must be of the form (~x : ~A)? and the Ci’s of the form (~z : ~B)X~m with no X in ~m. Fur-
thermore, the inductive types must be strictly positive. In CIC, this means that, if Ci = (~z : ~B)X~m
then, for all j, either X does not occur in Bj , or Bj is of the form (~y : ~D)X~q and X occurs neither in
~D nor in ~q.

• Constructors. The i-th constructor of an inductive type I is denoted by Constr(i, I). For instance,
Constr(1, Nat) represents zero and Constr(2, Nat) represents the successor function.
• Definitions by recursion. A definition by recursion on an inductive type I is denoted byElim(I,Q,~a,
c) where Q is the type of the result, ~a the arguments of I and c a term of type I~a. The strong elimina-
tion (i.e. when Q is a predicate type) is restricted to small inductive types, that is, to the types whose
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constructors have no other predicate arguments than the ones that their type have. Formally, an induc-
tive type I = Ind(X : A){~C} is small if all the types of its constructors are small, and a constructor
type C = (~z : ~B)X~m is small if ~z are object variables (this means that the predicate arguments must
be part of the environment in which they are typed; they cannot be part of ~C).

For defining the reduction relation associated with Elim, called ι-reduction and denoted by →ι,
and the typing rules of these inductive constructions (see Figure 1), it is necessary to introduce a few
definitions. Let C be a constructor type. We define ∆{I,X,C,Q, c} as follows:

– ∆{I,X,X ~m,Q, c} = Q~mc

– ∆{I,X, (z : B)D,Q, c} = (z : B)∆{I,X,D,Q, cz} if X does not occur in B
– ∆{I,X, (z : B)D,Q, c} = (z : B{X 7→I})((~y : ~D)Q~q (z~y))⇒ ∆{I,X,D,Q, cz}

if B = (~y : ~D)X~q

Then, the ι-reduction is defined by the rule:

Elim(I,Q, ~x,Constr(i, I ′)~z){~f} →ι ∆[I,X,Ci, fi, FunElim(I,Q, ~f)]~z

where I = Ind(X : A){~C}, FunElim(I,Q, ~f) = [~x : ~A][y : I~x]Elim(I,Q, ~x, y){~f} and ∆[I,X,C,
f, F ] is defined as follows:

– ∆[I,X,X ~m, f, F ] = f

– ∆[I,X, (z : B)D, f, F ] = [z : B]∆[I,X,D, fz, F ] if X does not occur in B
– ∆[I,X, (z : B)D, f, F ] = [z : B{X 7→I}]∆[I,X,D, fz[~y : ~D](F~q (z~y)), F ] if B = (~y : ~D)X~q

Finally, in the type conversion rule (Conv), in addition to β-reduction and ι-reduction, Werner con-
siders η-reduction: [x : T ]ux →η u if x does not occur in u. The relation ↔∗βηι is the reflexive,
symmetric and transitive closure of →βηι. Note that, since →βη is not confluent on badly typed terms
[23], considering η-reduction creates important difficulties.

3. The Calculus of Algebraic Constructions (CAC)

We assume the reader familiar with rewriting [12]. The Calculus of Algebraic Constructions (CAC) [6]
simply extends CC with a set F of symbols and a setR of rewrite rules (see Definition 3.3).

Definition 3.1. (Terms)
The set T of CAC terms is inductively defined as follows:

t, u ∈ T ::= s | x | f | [x : t]u | tu | (x : t)u

where s ∈ S = {?,2} is a sort, x ∈ X is a variable, f ∈ F is a symbol, [x : t]u is an abstraction, tu
is an application, and (x : t)u is a dependent product, written t ⇒ u if x does not freely occur in u. As
usual, terms are considered up to α-conversion, i.e. up to sort-preserving renaming of bound variables.
A term t is of the form a term u if t is α-convertible to uσ for some substitution σ.

We denote by FV(t) the set of variables that freely occur in t, by Pos(t) the set of Dewey’s positions
in t (words on strictly positive integers), by t|p the subterm of t at position p, by Pos(x, t) the set of
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Figure 1. Typing rules for inductive constructions in CIC

(Ind)

A = (~x : ~A) ? Γ ` A : 2 ∀i, Γ, X : A ` Ci : ?
I = Ind(X : A){~C} is strictly positive

Γ ` I : A

(Constr)
I = Ind(X : A){~C} Γ ` I : T
Γ ` Constr(i, I) : Ci{X 7→I}

(?-Elim)

A = (~x : ~A) ? I = Ind(X : A){~C} Γ ` Q : (~x : ~A)I~x⇒ ?

Ti = ∆{I,X,Ci, Q,Constr(i, I)}
∀j, Γ ` aj : Aj{~x 7→ ~a} Γ ` c : I~a ∀i, Γ ` fi : Ti

Γ ` Elim(I,Q,~a, c){~f} : Q~ac

(2-Elim)

A = (~x : ~A) ? I = Ind(X : A){~C} is small Γ ` Q : (~x : ~A)I~x⇒ 2

Ti = ∆{I,X,Ci, Q,Constr(i, I)}
∀j, Γ ` aj : Aj{~x 7→ ~a} Γ ` c : I~a ∀i, Γ ` fi : Ti

Γ ` Elim(I,Q,~a, c){~f} : Q~ac

(Conv)
Γ ` t : T T ↔∗βηι T ′ Γ ` T ′ : s

Γ ` t : T ′

positions p ∈ Pos(t) such that t|p is a free occurrence of x in t, and by dom(θ) = {x ∈ X | xθ 6= x} the
domain of a substitution θ. Let ~t denote a sequence of terms t1 . . . tn of length |~t| = n ≥ 0.

Every x ∈ X ∪ F is equipped with a sort sx. We denote by X s (resp. Fs) the set of variables (resp.
symbols) of sort s. Let FVs(t) = FV(t)∩X s and doms(θ) = dom(θ)∩X s. A variable or a symbol of
sort ? (resp. 2) is an object (resp. a predicate).

Although terms and types are mixed in Definition 3.1, we can distinguish the following three disjoint
sub-classes where t ∈ T denotes any term:

– objects: o ∈ O ::= x ∈ X ? | f ∈ F? | [x : t]o | ot
– predicates: P ∈ P ::= x ∈ X2 | f ∈ F2 | [x : t]P | Pt | (x : t)P
– predicate types or kinds: K ∈ K ::= ? | (x : t)K

Definition 3.2. (Precedence)
We assume given a total quasi-ordering ≥ on symbols whose strict part >=≥ \ ≤ is well-founded, and
let ' = ≥ ∩ ≤ be its associated equivalence relation. A symbol f is smaller (resp. strictly smaller) than
a symbol g iff f ≤ g (resp. f < g). A symbol f is equivalent to a symbol g iff f ' g.
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Figure 2. Typing rules of CAC

(ax) ` ? : 2

(symb)
` τf : sf
` f : τf

(var)
Γ ` T : sx

Γ, x : T ` x : T
(x /∈ dom(Γ))

(weak)
Γ ` t : T Γ ` U : sx

Γ, x : U ` t : T
(x /∈ dom(Γ))

(prod)
Γ ` U : s Γ, x : U ` V : s′

Γ ` (x : U)V : s′

(abs)
Γ, x : U ` v : V Γ ` (x : U)V : s

Γ ` [x : U ]v : (x : U)V

(app)
Γ ` t : (x : U)V Γ ` u : U

Γ ` tu : V {x 7→ u}

(conv)
Γ ` t : T Γ ` T ′ : s

Γ ` t : T ′
(T ↓βR T ′)

Definition 3.3. (Rewrite rule)
The terms only built from variables and applications of the form f~t are called algebraic. A rewrite rule
is a pair l→ r such that:

– l is algebraic,
– l is not a variable,
– FV(r) ⊆ FV(l),
– every symbol occurring in r is smaller than f .

The rewrite relation→R induced by R is the smallest relation containing R and stable by context and
substitution: t→R t′ iff there exist p ∈ Pos(t), l→ r ∈ R and σ such that t = t[lσ]p and t′ = t[rσ]p. A
symbol f with no rule f~l → r ∈ R is constant, otherwise it is (partially) defined. Let CFs (resp. DFs)
be the set of constant (resp. defined) symbols of sort s.

Definition 3.4. (Typing)
Every f ∈ F is equipped with a type τf such that:

– τf is a closed term of the form (~x : ~T )U with U distinct from a product,
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– every symbol occurring in τf is strictly smaller than f ,
– for every rule f~l→ r ∈ R, we have |~l| ≤ |~x|.
A constructor is any symbol f whose type is of the form (~y : ~U)C~v with C ∈ CF2. Let Cons be the set
of constructors. A typing environment is a sequence of variable-type pairs. Given f of type (~x : ~T )U ,
we denote by Γf the environment ~x : ~T .

The typing relation of CAC is the relation ` defined in Figure 2. Let `g (resp. `<g ) be the typing
relation defined by the rules of Figure 2 with the side condition f ≤ g (resp. f < g) in the (symb) rule.

In comparison with CC, we added the rule (symb) for typing symbols and, in the rule (conv), we
replaced ↓β by ↓βR, where u ↓βR v iff there exists a term w such that u →∗βR w and v →∗βR w,→∗βR
being the reflexive and transitive closure of→βR=→β ∪ →R. This means that types having a common
reduct are identified and share the same proofs: any term of type T is also of type T ′ if T and T ′ have a
common reduct. For instance, a proof of P (2 + 2) is also a proof of P (4) ifR contains the rules:

x+ 0 → x

x+ (s y) → s (x+ y)

This decreases the size of proofs by an important factor, and increases the automation as well. All
over the paper, we assume that→=→βR is confluent. This is the case if, for instance,R is left-linear
and confluent [22], like ι-reduction is.

A substitution θ preserves typing from Γ to ∆, written θ : Γ ; ∆, if, for all x ∈ dom(Γ), ∆ `
xθ : xΓθ, where xΓ is the type associated to x in Γ. Type-preserving substitutions enjoy the following
important property: if Γ ` t : T and θ : Γ ; ∆ then ∆ ` tθ : Tθ (Lemma 24 in [5]).

For ensuring the subject reduction property (preservation of typing under reduction, see Theorems 5
and 16 in [6]), rules must satisfy the following conditions (see Definition 3 in [6]):

Definition 3.5. (Well-typed rules)
Every rule f~l → r is assumed to be equipped with an environment Γ and a substitution ρ such that, if
τf = (~x : ~T )U and γ = {~x 7→ ~l}, the following conditions are satisfied:

– Γ ` r : Uγρ,
– ∀∆, σ, T , if ∆ ` lσ : T then σ : Γ ; ∆ and σ ↓ ρσ.

The first condition is decidable under the quite natural restriction that the typing of r does not need
the use of f~l→ r. The other conditions generally follow from the inversion of the judgment ∆ ` lσ : T ,
and confluence for the condition σ ↓ ρσ. Lemma 7 in [6] gives sufficient conditions for deciding that
σ : Γ ; ∆.

The substitution ρ allows to eliminate non-linearities only due to typing. This makes rewriting more
efficient and the proof of confluence easier. For instance, the concatenation on polymorphic lists (type
list : ? ⇒ ? with constructors nil : (A : ?)listA and cons : (A : ?)A ⇒ listA ⇒ listA) of type
(A : ?)listA⇒ listA⇒ listA can be defined by:

app A (nil A′) l′ → l′

app A (cons A′ x l) l′ → cons A x (app A x l l′)
app A (app A′ l l′) l′′ → app A l (app A l′ l′′)
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with Γ = A : ?, x : A, l : listA, l′ : listA and ρ = {A′ 7→ A}. Note that the third rule has no counterpart
in CIC. Although app A (nil A′) is not typable in Γ (sinceA′ /∈ dom(Γ)), it becomes typable if we apply
ρ. This does not matter since, if an instance app Aσ (nil A′σ) is typable then, after the typing rules, Aσ
is convertible to A′σ. See [6] for details.

We now introduce some restrictions on predicate-level rewrite rules, that generalize usual restrictions
of strong elimination. Indeed, it is well known that strong elimination on big inductive types may lead to
inconsistencies [9].

Definition 3.6. (Conditions on predicate-level rules)
– For all F ∈ F2, F~l→ r ∈ R and x ∈ FV2(r), there is κx such that lκx = x.
– Predicate-level rules have critical pairs with no rule.

The first condition means that one cannot do matching on predicate arguments, hence that predicate
variables are like parameters.

The condition on critical pairs, which is satisfied by CIC recursors, allows us to define an interpre-
tation for defined predicate symbols easily (see Definition 4.3). However, we think that this condition
could be weakened. For instance, consider F : nat⇒ ?⇒ ?⇒ ? and the rules:

F 0 A B → B

F (s n) A B → A⇒ (F n A B)

(F n A B) is the type of functions with n arguments of type A and output in B. So, it seems
reasonable to allow rules derived from inductive consequences of these first two rules, like for instance:

F (x+ y) A B → F x A (F y A B)

We now prove a simple lemma saying that, for proving a property P for every typing judgment
Γ ` t : T , one may proceed by well-founded induction on the symbol precedence and prove that P holds
for every typing judgment Γ `g t : T when it holds for every typing judgment Γ `f t : T such that
f < g.

Lemma 3.1. We have (1) Γ ` t : T and every symbol occurring in Γ, t, T smaller (resp. strictly smaller)
than g if and only if (2) Γ `g t : T (resp. Γ `<g t : T ).

Proof:
(1) ⇒ (2). One can easily prove by induction on Γ ` t : T that, (*) if Γ ` t : T and every symbol
occurring in Γ and t is smaller than g, then there exists T ′ such that T →∗ T ′ and Γ `g t : T ′ (see
Lemma 54 in [5]). In the (symb) case, it uses the assumption that every symbol occurring in τf is strictly
smaller than f (Definition 3.4). In the (conv) case, it uses confluence and the assumption that, for every
rule f~l → r, the symbols occurring in r are smaller than f (Definition 3.3). So, assume that Γ ` t : T
and every symbol occurring in Γ, t, T is smaller than g. By (*), there exists T ′ such that T →∗ T ′ and
Γ `g t : T ′. By type correctness (Lemma 28 in [5]), either T = 2 or Γ ` T : s. If T = 2 then
T ′ = T = 2 and Γ `g t : T . Now, if Γ ` T : s then, by (*) again, Γ `g T : s. Thus, by (conv),
Γ `g t : T . The same holds with `<g .
(2)⇒ (1). Easy induction on Γ `g t : T . ut



F. Blanqui / Inductive types in the Calculus of Algebraic Constructions 9

Corollary 3.1. If ` g : τg then `<g τg : sg.

Proof:
It follows from Lemma 3.1 and the assumption that, for all f , every symbol occurring in τf is strictly
smaller than f (see Definition 3.4). ut

4. Strong normalization

Typed λ-calculi are generally proved strongly normalizing by using Tait and Girard’s technique of re-
ducibility candidates [14]. The idea of Tait, later extended by Girard to the polymorphic λ-calculus, is
to strengthen the induction hypothesis. Instead of proving that every term is strongly normalizable (set
SN ), one associates to every type T a set [[T ]] ⊆ SN , the interpretation of T , and proves that every term
t of type T is computable, i.e. belongs to [[T ]]. Hereafter, we follow the proof given in [6] which greatly
simplifies the one given in [5]. All the definitions and properties of this section are taken from [6].

Definition 4.1. (Reducibility candidates)
We assume given a set N ⊆ T of neutral terms satisfying the following property: if t ∈ N and u ∈ T
then tu is not head-reducible. We inductively define the complete latticeRt of the interpretations for the
terms of type t, the ordering ≤t onRt, and the greatest element >t ∈ Rt as follows.

– Rt = {∅}, ≤t=⊆ and >t = ∅ if t 6= 2 and t is not of the form (~x : ~T )?.
– Rs is the set of all subsets R ⊆ T such that:

(R1) R ⊆ SN (strong normalization).
(R2) If t ∈ R then→(t) = {t′ ∈ T | t→ t′} ⊆ R (stability by reduction).
(R3) If t ∈ N and→(t) ⊆ R then t ∈ R (neutral terms).
Furthermore, ≤s=⊆ and >s = SN .

– R(x:U)K is the set of functionsR from T ×RU toRK such thatR(u, S) = R(u′, S) whenever u→ u′,
R ≤(x:U)K R′ iff, for all (u, S) ∈ T ×RU , R(u, S) ≤K R′(u, S), and >(x:U)K(u, S) = >K .

The exact definition of N is not necessary at this stage. Moreover, the choice of N may depend on
the way predicate symbols are interpreted. The set that we will choose is given in Definition 5.3.

Note that Rt = Rt′ whenever t → t′ (Lemma 34 in [6]). The proof that (Rt,≤t) is a complete
lattice is given in Lemma 35 in [6].

Definition 4.2. (Interpretation schema)
A candidate assignment is a function ξ from X to

⋃
{Rt | t ∈ T }. An assignment ξ validates an

environment Γ, ξ |= Γ, if, for all x ∈ dom(Γ), xξ ∈ RxΓ. An interpretation for a symbol f is an
element of Rτf . An interpretation for a set G of symbols is a function which, to every symbol g ∈ G,
associates an interpretation for g. The interpretation of a term t w.r.t. a candidate assignment ξ, an
interpretation I for F and a substitution θ, is defined by induction on t as follows:

• [[t]]Iξ,θ = >t if t is an object or a sort,

• [[x]]Iξ,θ = xξ,

• [[f ]]Iξ,θ = If ,

• [[(x : U)V ]]Iξ,θ = {t ∈ T | ∀u ∈ [[U ]]Iξ,θ,∀S ∈ RU , tu ∈ [[V ]]I
ξSx ,θ

u
x
},
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• [[[x : U ]v]]Iξ,θ(u, S) = [[v]]I
ξSx ,θ

u
x

,

• [[tu]]Iξ,θ = [[t]]Iξ,θ(uθ, [[u]]Iξ,θ),

where ξSx = ξ ∪ {x 7→ S} and θux = θ ∪ {x 7→ u}. A substitution θ is I-adapted to a Γ-assignment
ξ if dom(θ) ⊆ dom(Γ) and, for all x ∈ dom(θ), xθ ∈ [[xΓ]]Iξ,θ. A pair (ξ, θ) is (Γ, I)-valid, written
ξ, θ |=I Γ, if ξ |= Γ and θ is I-adapted to ξ. A term t such that Γ ` t : T is computable if, for all
(Γ, I)-valid pair (ξ, θ), tθ ∈ [[T ]]Iξ,θ. A sub-system `′⊆` is computable if every term typable in it is
computable.

Thanks to the property satisfied byN , one can prove that the interpretation schema defines reducibil-
ity candidates: if Γ ` t : T and ξ |= Γ, then [[t]]Iξ,θ ∈ RT (see Lemma 38 in [6]). Note also that
[[t]]Iξ,θ = [[t]]I

′
ξ′,θ′ whenever ξ and ξ′ agree on the predicate variables free in t, θ and θ′ agree on the

variables free in t, and I and I ′ agree on the symbols occurring in t.
Now, the difficult point is to define an interpretation I for every predicate symbol and to prove

that every symbol f is computable, i.e. f ∈ [[τf ]]I . We define I by induction on the precedence, and
simultaneously for the symbols that are in the same equivalence class. We first give the interpretation for
defined predicate symbols.

Definition 4.3. (Interpretation of defined predicate symbols)
If every ti has a normal form t∗i and ~t∗ = ~lσ for some rule F~l → r ∈ R, then IF (~t, ~S) = [[r]]Iξ,σ with
xξ = Sκx . Otherwise, IF (~t, ~S) = SN .

Sufficient conditions of well-definedness are given in [6]. Among other things, it assumes that, for
every rule f~l→ r, every symbol occurring in r is smaller than f (see Definition 3.3).

In order for the interpretation to be compatible with the conversion rule, we must make sure that
[[T ]]Iξ,θ = [[T ′]]Iξ,θ whenever T → T ′. This property is easily verified if predicate-level rewrite rules have
critical pairs with no rule, as required in Definition 3.6 (see Lemma 65 in [6]).

Now, following previous works on inductive types [21, 32], the interpretation of a constant predicate
symbol C is defined as the least fixpoint of a monotone function ϕC on the complete lattice RτC . Fol-
lowing Matthes [19], there are essentially two possible definitions that we illustrate by the case of nat.
The introduction-based definition:

ϕnat(I) = {t ∈ SN | t→∗ su⇒ u ∈ I}

and the elimination-based definition:

ϕnat(I) = {t ∈ T | ∀(ξ, θ) (Γ, I)-valid, rec Pθ uθ vθ t ∈ [[Pn]]Iξ,θtn}

where Γ = P : nat ⇒ ?, u : P0, v : (n : nat)Pn ⇒ P (sn). In both cases, the monotony of ϕnat
is ensured by the fact that nat occurs only positively in the types of the arguments of its constructors, a
common condition for inductive types (for simple types, we say that X occurs positively in Y ⇒ X and
negatively in X ⇒ Y ). Indeed, Mendler proved that recursors for negative types are not normalizing
[21]. Take for instance an inductive type C with constructor c : (C ⇒ nat)⇒ C. Assume now that we
have p : C ⇒ (C ⇒ nat) defined by the rule p(cx) →R x. Then, by taking ω = [x : C](px)x, we get
the infinite reduction sequence ω(cω) →β p(cω)(cω) →R ω(cω) →β . . . We now extend the notion of
positive positions to the terms of CC (in Section 9, we give a more general definition for dealing with
inductive-recursive types):
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Definition 4.4. (Positive/negative positions)
The sets of positive positions Pos+(t) and negative positions Pos−(t) in a term t are inductively defined
as follows:

– Posδ(s) = Posδ(x) = Posδ(f) = {ε | δ = +},
– Posδ((x : U)V ) = 1.Pos−δ(U) ∪ 2.Posδ(V ),
– Posδ([x : U ]v) = 2.Posδ(v),
– Posδ(tu) = 1.Posδ(t),

where ε is the empty word, “.” the concatenation, δ ∈ {−,+}, −+ = − and −− = + (usual rules of
signs). Moreover, if ≤ is an ordering, we let ≤+=≤ and ≤−=≥.

In [6], we used the introduction-based approach since this allowed us to have non-free constructors
and pattern-matching on defined symbols, which is forbidden in CIC and does not seem possible with
the elimination-based approach. For instance, in CAC, it is possible to formalize the type int of integers
by simply taking the symbols 0 : int, s : int⇒ int and p : int⇒ int, together with the rules:

s (p x) → x

p (s x) → x

It is also possible to have the following rule on natural numbers:

x× (y + z) → (x× y) + (x× z)

To this end, we considered as constructor not only the usual (constant) constructor symbols but any
symbol cwhose output type is a constant predicate symbolC (perhaps applied to some arguments). Then,
to preserve the monotony of ϕC , matching against c is restricted to the arguments, called accessible, in
the type of which C occurs only positively. We denote by Acc(c) the set of accessible arguments of c.
For instance, x is accessible in sx since nat occurs only positively in the type of x. But, we also have x
and y accessible in x+ y since nat occurs only positively in the types of x and y. So, + can be seen as
a constructor too, whose arguments are both accessible.

With this approach, we can safely take:

ϕnat(I) = {t ∈ SN | ∀f, t→∗ f~u⇒ ∀j ∈ Acc(f), uj ∈ [[Uj ]]Iξ,θ}

where f is any symbol of type (~y : ~U)nat and θ = {~y 7→ ~u}, whenever an appropriate assignment
ξ for the predicate variables of Uj can be defined, which seems possible only if the condition (I6) is
satisfied (see Definition 1.1). Here, since nat has no parameter, this condition is satisfied only if Uj has
no predicate argument.

As a consequence, if f~t is computable then, for all j ∈ Acc(f), tj is computable (see Lemma 53 in
[6]). This means that, when a rule applies, the matching substitution σ is computable. This property is
then used for proving the termination of higher-order rewrite rules by using the notion of computability
closure of a rule left hand-side (see Definition 25 in [6]). The computability closure is defined in such
a way that, if r is in the computability closure of f~l then, for all computable substitution σ, rσ is
computable whenever the terms in ~lσ are computable (see Theorem 67 in [6]).

As for first-order rewrite rules, i.e. rules with algebraic right hand-sides and variables of first-order
data type only, it is well known since the pioneering works of Breazu-Tannen and Gallier [7], and Okada



12 F. Blanqui / Inductive types in the Calculus of Algebraic Constructions

[24], that their combination with non-dependent typed λ-calculi preserves strong normalization. It comes
from the fact that first-order rewriting cannot create new β-redexes. This result can be extended to our
more general framework if the following two conditions are satisfied:

– Since we consider the combination of a set of first-order rewrite rules and a set of higher-order rewrite
rules, and since strong normalization is not modular [30], we require first-order rewrite rules to be non
duplicating (no variable occurs more times in a right hand-side than in a left hand-side) [28, 17].

– For proving that first-order rewrite rules preserve not only strong normalization but also computability,
we must make sure that, for first-order data types, computability is equivalent to strong normalization.

In fact, we consider a slightly more general notion of first-order data type than usual: our first-order
data types can be dependent if the dependencies are first-order data types too (e.g. lists of natural numbers
of fixed length).

Definition 4.5. (First-order data types)
Types equivalent to C are first-order data types3 if, for all D ' C, D : (~z : ~V )?, {~z} ⊆ X ? and, for
all d : (~x : ~T )D~v, {~x} ⊆ X ?, Acc(d) = {1, . . . , |~x|} and every Tj is of the form E ~w with E ≤ C a
first-order data type too.

5. Abstract recursors

From now on, we assume that the set of constant predicate symbols CF2 is divided in two disjoint sets:
the set CF2

intro of predicate symbols interpreted by the introduction-based method of [6], and the set
CF2

elim of predicate symbols interpreted by the elimination-based method of the present paper.
We now introduce an abstract notion of recursor for dealing with the elimination-based method in a

general way.

Definition 5.1. (Pre-recursors)
A pre-recursor for a symbol C : (~z : ~V )? in CF2

elim is any symbol f /∈ Cons such that:

– τf is of the form (~z : ~V )(z : C~z)W ,
– every predicate symbol occurring in W is smaller than C,
– every rule defining f is of the form f~z(c~t)~u→ r with c constant, ~z ∈ X and FV(r) ∩ {~z} = ∅,

The form of a pre-recursor type may seem restrictive. However, since termination is not established
yet, we cannot consider the normal form of a type when testing if it matches some given form. Moreover,
in an environment, every two variables whose types do not depend on each other can be permuted without
modifying the set of terms typable in this environment (see Lemma 18 in [5]). So, our results also apply
on symbols whose type can be brought to this form by various applications of this lemma.

Definition 5.2. (Positivity conditions)
A pre-recursor f : (~z : ~V )(z : C~z)W is a recursor if it satisfies the following positivity conditions:4

– no defined predicate F ' C occurs in W : Pos(F,W ) = ∅,
3Called primitive in [6].
4In Section 9, we give weaker conditions for dealing with inductive-recursive types.
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– every constant predicate D ' C occurs only positively in W : Pos(D,W ) ⊆ Pos+(W ).

A recursor f of sort sf = ? (resp. 2) is weak (resp. strong). We assume that every type C ∈ CF2
elim

has a non empty set Rec(C) of recursors, and that Rec(C) ∩ Rec(D) = ∅ whenever C and D are two
distinct predicate symbols of CF2

elim.

We now define a set N of neutral terms (see Definition 4.1) that is adapted to both the introduction-
based and the elimination-based approach.

Definition 5.3. (Neutral terms)
For the set N of neutral terms (see Definition 4.1), we choose the set of all terms not of the form:

– abstraction: [x : T ]u,
– partial application: f~t with f defined by some rule f~l→ r with |~l| > |~t|,
– constructor: f~t with τf = (~y : ~U)C~v, |~t| = |~y|, C ∈ CF2, and f constant whenever C ∈ CF2

elim.

In comparison with Definition 31 in [6], we just added the restriction, in the constructor case, that f
is constant if C ∈ CF2

elim. This therefore changes nothing if C ∈ CF2
intro.

We now define the interpretation of the equivalence class of a symbol C ∈ CF2
elim. Since we proceed

by induction on the precedence for defining the interpretation of predicate symbols, we can assume that
an interpretation for the symbols strictly smaller than C is already defined. The set of interpretations for
constant predicate symbols equivalent to C, ordered point-wise, is a complete lattice. We now define
the monotone function ϕ on this lattice whose fixpoint will be the interpretation for constant predicate
symbols equivalent to C.

Definition 5.4. (Interpretation of constant predicate symbols from CF2
elim)

If every ti has a normal form t∗i then ϕIC(~t, ~S) is the set of terms t such that, for all f ∈ Rec(C) of

type (~z : ~V )(z : C~z)(~y : ~U)V with V not a product, and for all ~yξ and ~yθ, if ξ ~S~z , θ
~t
~z
t
z |=I ~y : ~U then

f~t∗t~yθ ∈ [[V ]]I
ξ
~S
~z
,θ~t
~z
t
z

. Otherwise, ϕIC(~t, ~S) = SN .

This interpretation is well defined since, by Definition 5.1, every predicate symbol occurring in
(~y : ~U)V is smaller than C. Furthermore, one can easily check that ϕIC is stable by reduction: if ~t → ~t′

then ϕIC(~t, ~S) = ϕIC(~t′, ~S). We now prove that ϕIC(~t, ~S) is a reducibility candidate.

Lemma 5.1. R = ϕIC(~t, ~S) is a reducibility candidate.

Proof:

(R1) Let t ∈ R. We must prove that t ∈ SN . Since Rec(C) 6= ∅, there is at least one recursor f . Take
yiθ = yi and yiξ = >Ui . We clearly have ξ ~S~z , θ

~t
~z
t
z |=I ~y : ~U . Therefore, f~t∗t~y ∈ S = [[V ]]I

ξ
~S
~z
,θ~t
~z
t
z

.

Now, since S satisfies (R1), f~t∗t~y ∈ SN and t ∈ SN .
(R2) Let t ∈ R and t′ ∈→(t). We must prove that t′ ∈ R, hence that f~t∗t′~yθ ∈ S = [[V ]]I

ξ
~S
~z
,θ~t
~z
t
z

. This

follows from the fact that f~t∗t~yθ ∈ S (since t ∈ R) and S satisfies (R2).



14 F. Blanqui / Inductive types in the Calculus of Algebraic Constructions

(R3) Let t be a neutral term such that→(t) ⊆ R. We must prove that t ∈ R, hence that u = f~t∗t~yθ ∈
S = [[V ]]I

ξ
~S
~z
,θ~t
~z
t
z

. Since u is neutral and S satisfies (R3), it suffices to prove that→(u) ⊆ S. Since

~yθ ∈ SN by (R1), we proceed by induction on ~yθ with → as well-founded ordering. The only
difficult case could be when u is head-reducible, but this is not possible since t is neutral.

ut

The fact that ϕ is monotone, hence has a least fixpoint, follows from the positivity conditions.

Lemma 5.2. Let I ≤f I ′ iff If ≤ I ′f and, for all g 6= f , Ig = I ′g. If I ≤f I ′, Pos(f, t) ⊆ Posδ(t),
Γ ` t : T and ξ |= Γ then [[t]]Iξ,θ ≤δ [[t]]I

′
ξ,θ.

Proof:
By induction on t.

– [[s]]Iξ,θ = >s = [[s]]I
′
ξ,θ.

– [[x]]Iξ,θ = xξ = [[x]]I
′
ξ,θ.

– Let R = [[g~t]]Iξ,θ and R′ = [[g~t]]I
′
ξ,θ. R = Ig(~tθ, ~S) with ~S = [[~t]]Iξ,θ. R

′ = I ′g(~tθ, ~S
′) with ~S′ = [[~t]]I

′
ξ,θ.

Since Pos(f,~t) = ∅, ~S = ~S′. Now, if f = g then R ≤ R′ and δ = + necessarily. Otherwise, R = R′.
– Let R = [[(x : U)V ]]Iξ,θ and R′ = [[(x : U)V ]]I

′
ξ,θ. R = {t ∈ T | ∀u ∈ [[U ]]Iξ,θ, ∀S ∈ RU , tu ∈

[[V ]]I
ξSx ,θ

u
x
}. R′ = {t ∈ T | ∀u ∈ [[U ]]I

′
ξ,θ,∀S ∈ RU , tu ∈ [[V ]]I

ξ′Sx ,θ
u
x
}. Since Posδ((x : U)V ) =

1.Pos−δ(U) ∪ 2.Posδ(V ), Pos(f, U) ⊆ Pos−δ(U) and Pos(f, V ) ⊆ Posδ(V ). Therefore, by induc-
tion hypothesis, [[U ]]Iξ,θ ≤−δ [[U ]]I

′
ξ,θ and [[V ]]I

ξSx ,θ
u
x
≤δ [[V ]]I

ξ′Sx ,θ
u
x

. So, R ≤δ R′. Indeed, if δ = +,

t ∈ R and u ∈ [[U ]]I
′
ξ,θ ⊆ [[U ]]Iξ,θ then tu ∈ [[V ]]I

ξSx ,θ
u
x
⊆ [[V ]]I

ξ′Sx ,θ
u
x

and t ∈ R′. If δ = −, t ∈ R′ and

u ∈ [[U ]]Iξ,θ ⊆ [[U ]]I
′
ξ,θ then tu ∈ [[V ]]I

ξ′Sx ,θ
u
x
⊆ [[V ]]I

ξSx ,θ
u
x

and t ∈ R.

– Let R = [[[x : U ]v]]Iξ,θ and R′ = [[[x : U ]v]]I
′
ξ,θ. R and R′ have the same domain T ×RU and the same

codomain RV . R(u, S) = [[v]]I
ξSx ,θ

u
x

and R′(u, S) = [[v]]I
ξ′Sx ,θ

u
x

. Since Posδ([x : U ]v) = 2.Posδ(v),

Pos(f, v) ⊆ Posδ(v). Therefore, by induction hypothesis, R(u, S) ≤δ R′(u, S) and R ≤δ R′.
– Let R = [[tu]]Iξ,θ and R′ = [[tu]]I

′
ξ,θ. R = [[t]]Iξ,θ(uθ, S) with S = [[u]]Iξ,θ. R

′ = [[t]]I
′
ξ,θ(uθ, S

′) with
S′ = [[u]]I

′
ξ,θ. Since Posδ(tu) = 1.Posδ(t), Pos(f, t) ⊆ Posδ(t) and Pos(f, u) = ∅. Therefore,

S = S′ and, by induction hypothesis, [[t]]Iξ,θ ≤δ [[t]]I
′
ξ,θ. So, R ≤δ R′.

ut

Lemma 5.3. ϕ is monotone.

Proof:
Let I ≤ J . We must prove that, for all C, ~t, ~S, ϕIC(~t, ~S) ⊆ ϕJC(~t, ~S). If some ti has no normal form
then ϕIC(~t, ~S) = ϕJC(~t, ~S) = SN . Assume now that every ti has a normal form t∗i . Let t ∈ ϕIC(~t, ~S),
f ∈ Rec(C) with τf = (~z : ~V )(z : C~z)(~y : ~U)V , ~yξ and ~yθ such that ξ ~S~z , θ

~t
~z
t
z |=J ~y : ~U . We must

prove that f~t∗t~yθ ∈ [[V ]]J
ξ
~S
~z
,θ~t
~z
t
z

. ξ ~S~z , θ
~t
~z
t
z |=J ~y : ~U means that ~yθ ∈ [[~U ]]J

ξ
~S
~z
,θ~t
~z
t
z

.
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Let W = (~y : ~U)V . By assumption, for every D ' C, Pos(D,W ) ⊆ Pos+(W ). Thus,
Pos(D, ~U) ⊆ Pos−(~U) and Pos(D,V ) ⊆ Pos+(V ). Hence, by Lemma 5.2, ξ ~S~z , θ

~t
~z
t
z |=I ~y : ~U and

[[V ]]I
ξ
~S
~z
,θ~t
~z
t
z

⊆ [[V ]]J
ξ
~S
~z
,θ~t
~z
t
z

. Thus, f~t∗t~yθ ∈ [[V ]]J
ξ
~S
~z
,θ~t
~z
t
z

. ut

6. Admissible recursors

Now, for getting termination of β∪R, we need to prove that every symbol f is computable, i.e. f ∈ [[τf ]].
To this end, we give general conditions on recursors. We focus on what is new and refer the reader to
[6] for the other cases. After Lemma 3.1, we know that we can proceed by induction on the precedence
for proving the computability of well-typed terms. So, when defining conditions on a symbol f , we
can always assume w.l.o.g. that `<f is computable, i.e. terms with symbols strictly smaller than f are
computable (see Definition 4.2). In particular, every subterm of τf is computable (see Corollary 3.1).

Definition 6.1. (Admissible recursors)
Let C : (~z : ~V )? be a constant predicate symbol such that Rec(C) 6= ∅. We assume that every symbol
c : (~x : ~T )C~v is equipped with a set Acc(c) ⊆ {1, . . . , |~x|} of accessible arguments. A constructor of
C is any constant symbol c : (~x : ~T )C~v.

The set Rec(C) is complete w.r.t. accessibility if, for all constructor c : (~x : ~T )C~v, j ∈ Acc(c), ~xη
and ~xσ, if η |= Γc, ~vσ ∈ SN and c~xσ ∈ [[C~v]]η,σ then xjσ ∈ [[Tj ]]η,σ.

A recursor f : (~z : ~V )(z : C~z)(~y : ~U)V is head-computable w.r.t. a constructor c : (~x : ~T )C~v if,
whenever `<f is computable, for all ~xη, ~xσ, ~yξ, ~yθ, ~S = [[~v]]η,σ such that η, σ |= Γc and ξ ~S~z , θ

~vσ
~z
c~xσ
z |=

~y : ~U , every head-reduct of f~vσ(c~xσ)~yθ belongs to [[V ]]
ξ
~S
~z
,θ~vσ
~z
c~xσ
z

. A recursor is head-computable if it

is head-computable w.r.t. every constructor of C. Rec(C) is head-computable if all its recursors are
head-computable.
Rec(C) is admissible if it is head-computable and complete w.r.t. accessibility.

Completeness w.r.t. accessibility exactly insures that, if c~t is computable then, for all j ∈ Acc(c),
tj is computable (Lemma 53 in [6]), hence that non-recursor higher-order symbols are computable (see
Lemma 68 in [6]). We now prove that the elimination-based interpretation of first-order data types is
SN , hence that first-order symbols are computable (see Lemma 63 in [6]).

Lemma 6.1. If C is a first-order data type andRec(C) is head-computable then IC(~t, ~S) = SN .

Proof:
First note that Si = ∅ since {~z} ⊆ X ?. So, we do not write ~S in the following. By definition, for all ~t,
IC(~t) ⊆ SN . We now prove that, if t ∈ SN then, for all ~t, t ∈ IC(~t), by induction on t with→ ∪� as
well-founded ordering. If some ti has no normal form then t ∈ IC(~t) = SN . Assume now that every
ti has a normal form t∗i . Let f : (z : C)(~y : ~U)V be a recursor of C, ~yξ, ~yθ and σ = θ~t~z

t
z such that

ξ, σ |= ~y : ~U . We must prove that v = f~t∗t~yθ ∈ S = [[V ]]ξ,σ. Since v is neutral, it suffices to prove
that→(v) ⊆ S. We proceed by induction on t~yθ with→ as well-founded ordering (~yθ ∈ SN by R1).
If the reduction takes place in t~yθ, we can conclude by induction hypothesis. Assume now that v′ is a
head-reduct of v. By assumption on recursors, t is of the form c~u with c : (~x : ~T )C~v. Let γ = {~x 7→ ~u}.
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Since C is a first-order data type, every uj is accessible and every Tj is of the form D~w with D a first-
order data type too. Thus, by induction hypothesis, for all j, uj ∈ ID(~wγ). Therefore, ∅, γ |= Γc and
v′ ∈ S since ξ, σ |= ~y : ~U and recursors are assumed to be head-computable. ut

Lemma 6.2. Head-computable recursors are computable.

Proof:
Let f : (~z : ~V )(z : C~z)(~y : ~U)V be a recursor and assume that ξ, θ |= Γf . We must prove that
v = f~zθzθ~yθ ∈ S = [[V ]]ξ,θ. Since v is neutral, it suffices to prove that →(v) ⊆ S. We proceed by
induction on ~zθzθ~yθ with → as well-founded ordering (~zθzθ~yθ ∈ SN by R1). If the reduction takes
place in ~zθzθ~yθ, we conclude by induction hypothesis. Assume now that we have a head-reduct v′. By
definition of recursors (see Definition 5.1), zθ is of the form c~u with c : (~x : ~T )C~v, and v′ is also a head-
reduct of v0 = f(~zθ)∗zθ~yθ. Since ξ, θ |= Γf , we have zθ = c~u ∈ [[C~z]]ξ,θ = IC(~zθ, ~zξ). Therefore, by
definition of IC , v0 ∈ S and, by (R2), v′ ∈ S. ut

Lemma 6.3. (Computability)
For all g, if `<g is computable then `g is computable.

Proof:
We prove that, if Γ `g t : T and η, σ |= Γ then tσ ∈ [[T ]]η,σ, by induction on Γ `g t : T . We only detail
the (symb) case. The other cases are detailed in Lemma 66 in [6]. So, assume that `g f : τf . If f < g
then, by Lemma 3.1, `<g f : τf and f is computable since `<g is assumed to be computable. Otherwise,
f ' g and `<f =`<g . If f is a recursor then we can conclude by Lemma 6.2. So, assume that f is not a

recursor and that τf = (~x : ~T )U with U distinct from a product. By Definition 4.2, f is computable iff,
for all Γf -valid pair (η, σ), t = f~xσ ∈ R = [[U ]]η,σ.

If t is neutral then, by definition 4.1, it suffices to prove that→(t) ⊆ R, which follows from Lemmas
63 and 68 in [6]. Assume now that t is not neutral. Then, U = C~v with C ∈ CF2, and R = IC(~vσ, ~S)
with ~S = [[~v]]η,σ. If C ∈ CF2

intro then, again, it follows from Lemmas 63 and 68 in [6]. Otherwise,
C ∈ CF2

elim and, by Definition 5.1, f is constant.
By Corollary 3.1, `<f τf : sf . Since, by assumption, `<f is computable, by (R1), ~vσ ∈ SN . So,

let g : (~z : ~V )(z : C~z)(~y : ~U)V be a recursor of C, ~yξ and ~yθ such that ξ ~S~z , θ
~vσ
~z
f~xσ
z |= ~y : ~U . We

must prove that v = g(~vσ)∗(f~xσ)~yθ ∈ S = [[V ]]
ξ
~S
~z
,θ~vσ
~z
f~xσ
z

. Since v is neutral, it suffices to prove that

→(v) ⊆ S. By (R1), ~xσ~yθ ∈ SN . So, we can proceed by induction on ~xσ~yθ with→ as well-founded
ordering. No reduction can take place at the top of f~xσ since f is constant. In the case of a reduction
in ~xσ~yθ, we conclude by induction hypothesis. Finally, in the case of a head-reduction, we conclude by
head-computability of g. ut

We can now state our main result:

Theorem 6.1. (Strong normalization)
β ∪R preserves typing and is strongly normalizing if:

– β ∪R is confluent5 (if there are predicate-level rules),
– rewrite rules are well-typed,

5Again, this is the case if, for instance,R is confluent and left-linear [22].
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– every constant predicate symbol C ∈ CF2
elim is equipped with an admissible setRec(C) of recursors,

– strong recursors and non-recursor symbols satisfy the conditions given in Definition 29 in [6].

Proof:
After Lemma 3.1, we can proceed by induction on the precedence. Hence, by Lemma 6.3, every well-
typed term is computable. Let t be a term such that Γ ` t : T . With xθ = x and xξ = >xΓ, we clearly
have ξ, θ |= Γ since, by Lemma 33 in [6], variables are elements of every candidate. Thus, by (R1),
t ∈ SN . ut

As an application example of this theorem, we prove just below the admissibility of a large class of
recursors for strictly positive types, from which Coq’s recursors [8] can be easily derived (see Section 7).
Before that, let us remark that the condition I6 and the safeness condition described in the introduction
(Definitions 1.1 and 1.2 respectively) are not necessary anymore for weak recursors. On the other hand,
the safeness condition is still necessary for non-recursor symbols and strong recursors on types like
JMeq .

Definition 6.2. (Canonical recursors for strictly positive types)
Let C : (~z : ~V )? and ~c be strictly positive constructors of C, that is, if ci is of type (~x : ~T )C~v then either
no type equivalent to C occurs in Tj or Tj is of the form (~α : ~W )C ~w with no type equivalent to C in
~W . The parameters of C are the biggest sequence ~q such that C : (~q : ~Q)(~z : ~V )? and each ci is of type
(~q : ~Q)(~x : ~T )C~q~v with Tj = (~α : ~W )C~q ~w if C occurs in Tj .

The canonical weak recursor of C w.r.t. ~c is rec?~c : (~q : ~Q)(~z : ~V )(z : C~q~z)(P : (~z : ~V )C~q~z ⇒ ?)
(~y : ~U)P~zz with Ui = (~x : ~T )(~x′ : ~T ′)P~v(ci~q~x), T ′j = (~α : ~W )P ~w(xj~α) if Tj = (~α : ~W )C~q ~w, and
T ′j = Tj otherwise, defined by the rules rec?~c~q~z(ci~q

′~x)P~y → yi~x~t
′ where ~q, ~z, ~q′, ~x, P, ~y are variables,

t′j = [~α : ~W ](rec?~c~q ~w(xj~α)P~y) if Tj = (~α : ~W )C~q ~w, and t′j = xj otherwise.6

The canonical strong recursor7 of C w.r.t. ~c and P = [~z : ~V ][z : C~q~z]Q is recP~c : (~q : ~Q)(~z : ~V )
(z : C~q~z)(~y : ~U)Q with Ui = (~x : ~T )(~x′ : ~T ′)Q{~z 7→ ~v, z 7→ ci~q~x}, T ′j = (~α : ~W )Q{~z 7→ ~w, z 7→
xj~α} if Tj = (~α : ~W )C~q ~w, and T ′j = Tj otherwise, defined by the rules recP~c ~q~z(ci~q

′~x)~y → yi~x~t
′ where

~q, ~z, ~q′, ~x, ~y are variables, t′j = [~α : ~W ](recP~c ~q ~w(xj~α)~y) if Tj = (~α : ~W )C~q ~w, and t′j = xj otherwise.

Lemma 6.4. The rules defining canonical recursors preserve typing.

Proof:
For the rule rec?~c~q~z(ci~q

′~x)P~y → yi~x~t
′, take Γ = ~q : ~Q, ~x : ~T , P : (~z : ~V )C~q~z ⇒ ?, ~y : ~U and

ρ = {~z 7→ ~v, ~q′ 7→ ~q}. We prove the conditions required in Section 3:

– One can easily check that Γ ` yi~x~t′ : P~v(ci~q~x).
– Assume now that ∆ ` (rec?~c~q~z(ci~q

′~x)P~y)σ : T . We must prove that σ : Γ ; ∆ and σ ↓ ρσ. Both
properties follow by inversion of the typing judgment and confluence.

The proof is about the same for strong recursors. ut

Lemma 6.5. The set of canonical recursors is complete w.r.t. accessibility.8

6We could erase the useless arguments t′j = xj when T ′
j = Tj as it is done in CIC.

7Strong recursors cannot be defined exactly like weak recursors by simply taking P : (~z : ~V )C~q~z ⇒ 2 since (~z : ~V )C~q~z ⇒ 2

is not typable in CC. They must be defined for each P . That is why Werner considered a slightly more general PTS in [32].
8In [32] (Lemma 4.35), Werner proves a similar result.
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Proof:
Let c = ci : (~q : ~Q)(~x : ~T )C~q~v be a constructor of C : (~q : ~Q)(~z : ~V )?, ~qη, ~xη, ~qσ and ~xσ such
that ~qσ~vσ ∈ SN and c~qσ~xσ ∈ [[C~q~v]]η,σ = IC(~qσ~vσ, ~qη[[~v]]η,σ). Let ~a = ~q~x and ~A = ~Q~T . We
must prove that, for all j, ajσ ∈ [[Aj ]]η,σ. For the sake of simplicity, we assume that weak and strong
recursors have the same syntax. Since ~qσ~vσ have normal forms, it suffices to find P and u such that
recc~q~v(c~a)Pu→ u~x~t′ →∗β aj . Take P = [~z : ~V ][z : C~q~z]Aj and u = [~x : ~T ][~x′ : ~T ′]aj . ut

Lemma 6.6. Canonical recursors are head-computable.

Proof:
Let f = rec? : (~q : ~Q)(~z : ~V )(z : C~q~z)(P : (~z : ~V )C~q~z ⇒ ?)(~y : ~U)P~zz be the canonical weak
recursor w.r.t. ~c, T = (~z : ~V )C~q~z ⇒ ?, c = ci : (~q : ~Q)(~x : ~T )C~q~v, ~qη, ~qσ, ~xη, ~xσ, Pξ, Pθ,
~yξ, ~yθ, ~R = [[~v]]η,σ, ξ′ = ξ

~R
~z and θ′ = θ~vσ~z

c~xσ
z , and assume that `<f is computable, η, σ |= Γc and

ηξ′, σθ′ |= P : T, ~y : ~U . We must prove that yiθ~xσ~t′σθ ∈ [[P~zz]]ξ′,θ′ .
We have yiθ ∈ [[Ui]]ξ′,θ′ , Ui = (~x : ~T )(~x′ : ~T ′)P~v(c~q~x) and xjσ ∈ [[Tj ]]η,σ = [[Tj ]]ηξ′,σθ′ . We prove

that t′jσθ ∈ [[T ′j ]]ηξ′,σθ′ . If T ′j = Tj then t′jσθ = xjσ and we are done. Otherwise, Tj = (~α : ~W )C~q ~w,
T ′j = (~α : ~W )P ~w(xj~α) and t′j = [~α : ~W ]f~q ~w(xj~α)P~y. Let ~αζ and ~αγ such that ηξ′ζ, σθ′γ |= ~α : ~W .
Let t = xjσ~αγ. We must prove that v = f~qσ ~wσγtPθ~yθ ∈ S = [[P ~w(xj~α)]]ηξ′ζ,σθ′γ . Since v is neutral,
it suffices to prove that→(v) ⊆ S.

By (R1), we have ~qσtPθ~yθ ∈ SN . Since `<f is computable and ~w is a subterm of τf , by (R1), we
also have ~wσγ ∈ SN . Thus, we can proceed by induction on ~qσ ~wσγtPθ~yθ ∈ SN with → as well-
founded ordering. In the case of a reduction in ~qσ ~wσγtPθ~yθ, we conclude by induction hypothesis.
Assume now that we have a head-reduct v′. By definition of recursors, v′ is also a head-reduct of
v0 = f(~qσ)∗(~wσγ)∗tPθ~yθ where (~qσ)∗(~wσγ)∗ are the normal forms of ~qσ ~wσγ. If v0 ∈ S then, by
(R2), v′ ∈ S. So, let us prove that v0 ∈ S.

By candidate substitution (Lemma 40 in [6]), S = [[P~zz]]
ξ
~S
~z
,θ ~wσγ
~z

t
z

with ~S = [[~w]]ηξ′ζ,σθ′γ = [[~w]]ηξζ,σθγ

for FV(~w) ⊆ {~q, P, ~x, ~α}. Since xjσ ∈ [[Tj ]]ηξ′,σθ′ and ηξ′ζ, σθ′γ |= ~α : ~W , t ∈ [[C~q ~w]]ηξ′ζ,σθ′γ =
IC(~qσ ~wσγ, ~qξ~S). Since ηξ′, σθ′ |= P : T, ~y : ~U and FV(T ~U) ⊆ {~q, P}, we have ηξ, σθ |= P : T, ~y :
~U and ηξ ~S~z , σθ

~wσγ
~z

t
z |= P : T, ~y : ~U . Therefore, v0 ∈ S.

The proof is about the same for strong recursors. ut

7. Application to CIC

It follows that CAC subsumes CIC almost completely. However, Theorem 6.1 cannot be applied to CIC
directly since CIC and CAC do not have the same syntax and the same typing rules. So, we define a
sub-system of CIC, called CIC−, whose terms can be translated into a CAC satisfying the conditions of
Theorem 6.1.

The ι-reduction of CIC introduces many β-redexes and the recursive calls on Elim are made on
bound variables which are later instantiated by structurally smaller terms. Instead, we consider the
relation→βι′ where one step of→ι′ corresponds to a ι-reduction followed by as many β-reductions as
necessary for erasing the β-redexes introduced by the ι-reduction. This is this reduction relation which
is actually implemented in the Coq system [8]. Moreover, we conjecture that the strong normalization of
→βι′ implies the strong normalization of→βι.
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Definition 7.1. (ι′-reduction)
The ι′-reduction is the reduction relation defined by the rule:

Elim(I,Q, ~x,Constr(i, I ′)~z){~f} →ι′ ∆′[I,X,Ci, fi, Q, ~f, ~z]

where I = Ind(X : A){~C} and ∆′[I,X,C, f,Q, ~f, ~z] is defined as follows:

– ∆′[I,X,X ~m, f,Q, ~f, ∅] = f

– ∆′[I,X, (z : B)D, f,Q, ~f, z~z] = ∆′[I,X,D, fz,Q, ~z] if X /∈ FV(B)
– ∆′[I,X, (z : B)D, f,Q, ~f, z~z] = ∆′[I,X,D, fz [~y : ~D]Elim(I,Q, ~q, z~y), Q, ~z] if B = (~y : ~D)X~q

We now define the sub-system of CIC (see Figure 3) that we are going to consider:

Definition 7.2. (CIC−)
• We exclude any use of the sort4 in order to stay in the Calculus of Constructions.
• In the rule (conv), instead of requiring T ↔∗βηι T ′, we require T ↔∗βι′ T ′ which is equivalent to
T ↓βι′ T ′ since→βι′ is confluent (orthogonal CRS [25]).
• In the rule (Ind), we require I to be in normal form w.r.t. →βι′ (set NF) and to be typable in the

empty environment since, in CAC, the types of symbols must be typable in the empty environment.
This is not a real restriction since any type I = Ind(X : A){~C} typable in an environment Γ = ~y : ~U
can be replaced by a type I ′ = Ind(X ′ : A′){~C ′} typable in the empty environment. It suffices
to take A′ = (~y : ~U)A, C ′i = (~y : ~U)Ci{X 7→ X ′~y} and to replace I by I ′~y and Constr(i, I)
by Constr(i, I ′)~y. Furthermore, we adapt the definition of small constructor type accordingly. A
constructor type C of an inductive type I = Ind(X : A){~C} with A = (~x : ~A)? is small if it is of the
form (~x′ : ~A′)(~z : ~B)X~m with ~x′ : ~A′ a sub-sequence of ~x : ~A and {~z} ∩ X2 = ∅.
• In the rule (?-Elim), we require Q to be typable in the empty environment, and add explicit typing

judgments for Ti and I . Again, it is not a real restriction since we can always replace an environment
by additional abstractions.
• In the rule (2-Elim), instead of requiring ` Q : (~x : ~A)I~x ⇒ 2, which is not possible in CC, we

require Q to be of the form [~x : ~A][y : I~x]K with ~x : ~A, y : I~x ` K : 2 (this just requires some η-
expansions) and fi to be of type Ti = ∆′{I,X,Ci, ~xy,K,Constr(i, I)}where ∆′{I,X,C, ~xy,K, c}
is defined as follows:

– ∆′{I,X,X ~m, ~xy,K, c} = K{~x 7→ ~m, y 7→ c},
– ∆′{I,X, (z : B)D,~xy,K, c} =

(z : B{X 7→I})((~y : ~D)K{~x 7→~q, y 7→z~y})⇒ ∆′{I,X,D, ~xy,K, cz} if B = (~y : ~D)X~q.

Moreover, we require Q to be in normal form and Ti to be typable. We also take Γ ` Elim(I,Q,~a, c)
{~f} : K{~x 7→ ~a, y 7→ c} instead of Γ ` Elim(I,Q,~a, c){~f} : Q~ac. Finally, we require I to be safe
(see Definition 1.2): if A = (~x : ~A)? and Ci = (~z : ~B)X~m then:

– for all xi ∈ X2, mi ∈ X2,
– for all xi, xj ∈ X2 with i 6= j, mi 6= mj .

We now show that CIC− can be translated into a CAC satisfying the conditions of Theorem 6.1.

Definition 7.3. (Translation)
We define 〈t〉 on well-typed terms, by induction on Γ ` t : T :
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Figure 3. Typing rules of CIC−

(Ind)

A = (~x : ~A)? ` A : 2 ∀i, X : A ` Ci : ?
I = Ind(X : A){~C} ∈ NF is strictly positive

` I : A

(Constr)
I = Ind(X : A){~C} Γ ` I : T
Γ ` Constr(i, I) : Ci{X 7→I}

(?-Elim)

A = (~x : ~A) ? I = Ind(X : A){~C} Γ ` I : T ` Q : (~x : ~A)I~x⇒ ?

Ti = ∆{I,X,Ci, Q,Constr(i, I)} ` Ti : ?
∀j, Γ ` aj : Aj{~x 7→ ~a} Γ ` c : I~a ∀i, Γ ` fi : Ti

Γ ` Elim(I,Q,~a, c){~f} : Q~ac

(2-Elim)

A = (~x : ~A) ? I = Ind(X : A){~C} is small and safe
Q = [~x : ~A][y : I~x]K ∈ NF ~x : ~A, y : I~x ` K : 2

Ti = ∆′{I,X,Ci, ~xy,K,Constr(i, I)} ` Ti : 2

∀j, Γ ` aj : Aj{~x 7→ ~a} Γ ` c : I~a ∀i, Γ ` fi : Ti

Γ ` Elim(I,Q,~a, c){~f} : K{~x 7→ ~a, y 7→ c}

(Conv)
Γ ` t : T T ↔∗βι′ T ′ Γ ` T ′ : s

Γ ` t : T ′

• If I = Ind(X : A){~C} then 〈I〉 = IndI where IndI is a symbol of type 〈A〉.
• 〈Constr(i, I)〉 = ConstrIi where ConstrIi is a symbol of type 〈Ci{X 7→ I}〉.
• If Q is not of the form [~x : ~A][y : I~x](~y : ~U)? then 〈Elim(I,Q,~a, c){~f}〉 = WElimI〈Q〉〈~a〉〈c〉〈~f〉

where WElimI is a symbol of type (Q : (~x : 〈 ~A〉)〈I〉~x⇒ ?)(~x : 〈 ~A〉)(y : 〈I〉~x)(~f : 〈~T 〉)〈Q〉~xy.
• If Q = [~x : ~A][y : I~x]K with K = (~y : ~U)? then 〈Elim(I,Q,~a, c){~f}〉 = SElimQ

I 〈~a〉〈c〉〈~f〉 where
SElimQ

I is a symbol of type (~x : 〈 ~A〉)(y : 〈I〉~x)(~f : 〈~T 〉)〈K〉.
• The translation of the other terms is defined recursively: 〈uv〉 = 〈u〉〈v〉, . . .

Let Υ be the CAC whose symbols are IndI , ConstrIi ,WElimI and SElimQ
I , and whose rules are:

WElimI Q ~x (ConstrIi ~z) ~f → ∆′W [I,X,Ci, fi, Q, ~f, ~z]
SElimQ

I ~x (ConstrIi ~z) ~f → ∆′S [I,X,Ci, fi, Q, ~f, ~z]

where ∆′W [I,X,C, f,Q, ~f, ~z] and ∆′S [I,X,C, f,Q, ~f, ~z] are defined as follows:

– ∆′W [I,X,X ~m, f,Q, ~f, ~z] = ∆′S [I,X,X ~m, f,Q, ~f, ~z] = f ,
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– ∆′S [I,X, (z : B)D, f,Q, ~f, z~z] = ∆′S [I,X,D, f z,Q, ~f, ~z] and
∆′W [I,X, (z : B)D, f,Q, ~f, z~z] = ∆′W [I,X,D, f z,Q, ~f, ~z] if X /∈ FV(B)

– ∆′S [I,X, (z : B)D, f,Q, ~f, z~z] = ∆′S [I,X,D, f z [~y : ~D]SElimQ
I
~f~q(z~y), Q, ~f, ~z] and

∆′W [I,X, (z : B)D, f,Q, ~f, z~z] = ∆′W [I,X,D, f z [~y : ~D]WElimIQ~f~q(z~y), Q, ~f, ~z]
if B = (~y : ~D)X~q

Let Ὺ be the typing relation of Υ.

Theorem 7.1. The relation→βι′ in CIC− preserves typing and is strongly normalizing.

Proof:
First, one can easily check that the translation preserves typing and reductions:

– If Γ ` t : T then 〈Γ〉 Ὺ 〈t〉 : 〈T 〉.
– If Γ ` t : T and t→βι′ t

′ then 〈t〉 → 〈t′〉.
Thus, we are left to prove that Υ satisfies the conditions of Theorem 6.1. The symbols WElimI and
SElimQ

I are the canonical recursors of IndI w.r.t. the constructors ConstrIi (see Definition 6.2). Hence,
subject reduction follows from Lemma 6.4, and the fact that Rec(IndI) = {WElimI , SElim

Q
I } is

admissible follows from Lemma 6.5 and Lemma 6.6. ut

8. Non-strictly positive types

We are going to see that the use of elimination-based interpretations allows us to have functions defined
by recursion on non-strictly positive types, while CIC has always been restricted to strictly positive
types. An interesting example is given by Abel’s formalization of first-order terms with continuations as
an inductive type trm : ? with the constructors [1]:

var :nat⇒ trm

fun :nat⇒ (list trm)⇒ trm

mu :¬¬trm⇒ trm

where list : ? ⇒ ? is the type of polymorphic lists, ¬X is an abbreviation for X ⇒ ⊥ (in the next
section, we will prove that ¬ can be defined as a function), and ⊥ : ? is the empty type. Its recursor rec :
(A : ?)(y1 : nat ⇒ A) (y2 : nat ⇒ list trm ⇒ listA ⇒ A)(y3 : ¬¬trm ⇒ ¬¬A ⇒ A)(z : trm)A
can be defined by the rules:

rec A y1 y2 y3 (var n) → y1 n

rec A y1 y2 y3 (fun n l) → y2 n l (map trm A (rec A y1 y2 y3) l)
rec A y1 y2 y3 (mu f) → y3 f [x : ¬A](f [y : trm](x (rec A y1 y2 y3 y)))

where map : (A : ?)(B : ?)(A⇒ B)⇒ list A⇒ list B is defined by the rules:

map A B f (nil A′) → (nil B)
map A B f (cons A′ x l) → cons B (f x) (map A B f l)
map A B f (app A′ l l′) → app B (map A B f l) (map A B f l′)
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We now check that rec is an admissible recursor. Completeness w.r.t. accessibility is easy. For
the head-computability, we only detail the case of mu. Let fσ, t = mu fσ, Aξ, Aθ and ~yθ such
that ∅, σ |= Γmu and ξ, σθtz |= Γ = A : ?, ~y : ~U where Ui is the type of yi. Let b = recAθ~yθ,
c = [y : trm](x(by)) and a = [x : ¬Aθ](fσc). We must prove that y3θfσa ∈ [[A]]ξ,σθtz = Aξ.

Since ξ, σθtz |= Γ, y3θ ∈ [[¬¬trm⇒ ¬¬A⇒ A]]ξ,θ. Since ∅, σ |= Γmu, fσ ∈ [[¬¬trm]]. Thus, we
are left to prove that a ∈ [[¬¬A]]ξ,θ, that is, fσcγ ∈ I⊥ for all xγ ∈ [[¬A]]ξ,θ. Since fσ ∈ [[¬¬trm]], it
suffices to prove that cγ ∈ [[¬trm]], that is, xγ(byγ) ∈ I⊥ for all yγ ∈ Itrm. This follows from the facts
that xγ ∈ [[¬A]]ξ,θ and byγ ∈ Aξ since yγ ∈ Itrm.

A general proof could certainly be given by using a general formalization of inductive types like in
[19] for instance.

9. Inductive-recursive types

In this section, we define new positivity conditions for dealing with inductive-recursive type definitions
[13]. An inductive-recursive type C has constructors whose arguments have a type Ft with F defined
by recursion on t : C, that is, a predicate F and its domain C are defined at the same time.

A simple example is the type dlist : (A : ?)(# : A ⇒ A ⇒ ?)? of lists made of distinct elements
thanks to the predicate fresh : (A : ?)(# : A ⇒ A ⇒ ?)A ⇒ (dlistA#) ⇒ ? parametrized by a
function # to test whether two elements are distinct. The constructors of dlist are:

nil : (A : ?)(#:A⇒A⇒?)(dlistA#)
cons : (A : ?)(#:A⇒A⇒?)(x : A)(l : dlistA#)(fresh A # x l)⇒ (dlistA#)

and the rules defining fresh are:

fresh A # x (nil A′) → >
fresh A # x (cons A′ y l h) → x#y ∧ fresh A # x l

where > is the proposition always true and ∧ the connector “and”. Other examples are given by Martin-
Löf’s definition of the first universe à la Tarski [13] or by Pollack’s formalization of record types with
manifest fields [27].

For allowing defined predicate symbols in constructor types, we must extend the notion of positive
and negative positions by taking into account the arguments in which a defined predicate symbol is mono-
tone or anti-monotone. We must also make sure that defined predicate symbols are indeed monotone and
anti-monotone in the arguments declared to have this property.

Definition 9.1. (Positive/negative positions - New definition)
Assume that every predicate symbol f : (~x : ~T )U with U not a product is equipped with a set
Mon+(f) ⊆ A2

f = {i ≤ |~x| | xi ∈ X2} of monotone arguments and a set Mon−(f) ⊆ A2
f of

anti-monotone arguments. Definition 4.4 is modified as follows:

– Posδ(f~t) = {1|~t| | δ = +} ∪
⋃
{1|~t|−i2.Posεδ(ti) | ε ∈ {−,+}, i ∈ Monε(f)},

– Posδ(tu) = 1.Posδ(t) if t is not of the form f~t.
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For instance, in the positive type trm of Section 8, instead of considering ¬A as an abbreviation, one
can consider ¬ as a predicate symbol defined by the rule ¬A → A ⇒ ⊥ with Mon−(¬) = {1}. Then,
one easily check that A occurs negatively in A ⇒ ⊥, and hence that trm occurs positively in ¬¬trm
since Pos+(¬¬trm) = {1} ∪ 2.Pos−(¬trm) = {1} ∪ 2.2.Pos+(trm) = {1, 2.2}.

Definition 9.2. (Positivity conditions - New definition)
Definition 5.2 is modified as follows. A pre-recursor f : (~z : ~V )(z : C~z)W is a recursor if:

– every F ' C occurs only positively in W ,
– if i ∈ Monδ(C) then Pos(zi,W ) ⊆ Posδ(W ).

Moreover, we assume that, for every rule F~l→ r ∈ R with F ∈ F2:

– for all i ∈ Monε(F ), li ∈ X2 and Pos(li, r) ⊆ Posε(r).

Now, we must reflect these monotony properties in the interpretations. Then, Theorem 6.1 is still
valid if we prove that the interpretations for constant and defined predicate symbols have all the monotony
properties.

Definition 9.3. (Monotone interpretation)
Let ~S ≤i ~S′ iff Si ≤ S′i and, for all j 6= i, Sj = S′j . Let F be a predicate symbol. An interpretation
I ∈ RτF is monotone (resp. anti-monotone) in its i-th argument if I(~t, ~S) ≤ I(~t, ~S′) whenever ~S ≤i ~S′
(resp. ~S ≥i ~S′). An interpretation I ∈ RτF is monotone if it is monotone in every i ∈ Mon+(F ) and
anti-monotone in every i ∈ Mon−(F ). LetRmτF be the set of monotone interpretations ofRτF .

One can easily check thatRmτF is a complete lattice too. For proving that interpretations for predicate
symbols are monotone, we need to prove Lemma 5.2 again, and to prove a similar lemma on candidate
assignments.

Lemma 9.1. If I ≤f I ′, Pos(f, t) ⊆ Posδ(t), Γ ` t : T and ξ |= Γ then [[t]]Iξ,θ ≤δ [[t]]I
′
ξ,θ.

Proof:
We only have to check the case t = g~t. LetR = [[g~t]]Iξ,θ andR′ = [[g~t]]I

′
ξ,θ. R = Ig(~tθ, ~S) with ~S = [[~t]]Iξ,θ.

R′ = Ig(~tθ, ~S′) with ~S′ = [[~t]]I
′
ξ,θ. Let i ≤ n = |~t|. If Pos(f, ti) = ∅ then Si = S′i. Otherwise, there is

εi such that i ∈ Monεi(f) and Pos(f, ti) ⊆ Posεiδ(ti). Thus, by induction hypothesis, Si ≤εiδ S′i. Let
Sji = Si if i > j, and Sji = S′i otherwise. ~S0 = ~S, ~Sn = ~S′ and, for all j ≤ n, ~Sj−1 ≤εjδj ~Sj . Since

Ig is monotone, for all j ≤ n, Ig(~tθ, ~Sj−1) ≤ε
2
jδ Ig(~tθ, ~Sj), that is, Ig(~tθ, ~Sj−1) ≤δ Ig(~tθ, ~Sj) since

ε2j = +. Thus, R = Ig(~S) ≤δ Ig(~S′). Now, if g 6= f then Ig = I ′g and R ≤δ R′. If g = f then δ = +
and R ≤ R′ since If ≤ I ′f . ut

Lemma 9.2. Let ξ ≤x ξ′ iff xξ ≤ xξ′ and, for all y 6= x, yξ = yξ′. If I is monotone, ξ ≤x ξ′,
x ∈ Posδ(t), Γ ` t : T and ξ, ξ′ |= Γ then [[t]]Iξ,θ ≤δ [[t]]Iξ′,θ.

Proof:
By induction on t. The proof is very similar to the previous lemma. We only detail the following two
cases:

• [[x]]Iξ,θ = xξ ≤ xξ′ = [[x]]Iξ,θ and δ = + necessarily.
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• Let R = [[g~t]]Iξ,θ and R′ = [[g~t]]Iξ′,θ. R = Ig(~tθ, ~S) with ~S = [[~t]]Iξ,θ. R
′ = Ig(~tθ, ~S′) with ~S′ = [[~t]]Iξ′,θ.

Let i ≤ n = |~t|. If Pos(f, ti) = ∅ then Si = S′i. Otherwise, there is εi such that i ∈ Monεi(f)
and Pos(f, ti) ⊆ Posεiδ(ti). Thus, by induction hypothesis, Si ≤εiδ S′i. Let Sji = Si if i > j, and
Sji = S′i otherwise. ~S0 = ~S, ~Sn = ~S′ and, for all j ≤ n, ~Sj−1 ≤εjδj ~Sj . Since Ig is monotone,

for all j ≤ n, Ig(~tθ, ~Sj−1) ≤ε
2
jδ Ig(~tθ, ~Sj), that is, Ig(~tθ, ~Sj−1) ≤δ Ig(~tθ, ~Sj) since ε2j = +. Thus,

R ≤δ R′.
ut

Lemma 9.3. The interpretations for predicate symbols are monotone.

Proof:
We first prove it for constant predicate symbols. Assuming that I is monotone, we must prove that ϕIC
is monotone. Let i ∈ Monδ(C) and ~S ≤δi ~S′. We must prove that R = ϕIC(~t, ~S) ⊆ R′ = ϕIC(~t, ~S′). If
some ti has no normal form then R = R′ = SN . Assume now that every ti has a normal form t∗i . Let
t ∈ R, f ∈ Rec(C) of type (~z : ~V )(z : C~z)(~y : ~U)V , ~yξ and ~yθ such that ξ ~S

′

~z , θ
~t
~z
t
z |=I ~y : ~U . We must

prove that f~t∗t~yθ ∈ [[V ]]I
ξ
~S′
~z
,θ~t
~z
t
z

. To this end, it is sufficient to prove that [[~U ]]I
ξ
~S′
~z
,θ~t
~z
t
z

⊆ [[~U ]]I
ξ
~S
~z
,θ~t
~z
t
z

and that

[[V ]]I
ξ
~S
~z
,θ~t
~z
t
z

⊆ [[V ]]I
ξ
~S′
~z
,θ~t
~z
t
z

, which is the case by Lemma 9.2 since Pos(zi,W ) ⊆ Pos+(W ) by assumption.

We now prove that the interpretation for defined predicate symbols is monotone. Let F be a defined
predicate symbol. Let i ∈ Monδ(F ) and ~S ≤δi ~S′. We must prove that R = IF (~t, ~S) ⊆ R′ = IF (~t, ~S′).
Assume that every ti has a normal form t∗i and that ~t∗ = ~lσ for some rule F~l→ r ∈ R. If this is not the
case then R = R′ = SN . So, R = [[r]]Iξ,σ with xξ = Sκx , and R′ = [[r]]Iξ′,σ with xξ′ = S′κx . If, for all
x ∈ FV2(r), κx 6= i, then ξ = ξ′ and R = R′. Otherwise, i = κx for some x, and ξ ≤δx ξ′. By Lemma
9.2, R ⊆δ2

R′ since Pos(x, r) ⊆ Posδ(r) by assumption. Thus, R ⊆ R′ since δ2 = +. ut

10. Conclusion

By using an elimination-based interpretation for some inductive types, we proved that the Calculus of
Algebraic Constructions subsumes the Calculus of Inductive Constructions almost completely. We de-
fine general conditions on recursors for preserving strong normalization and show that these conditions
are satisfied by a large class of recursors for strictly positive types and by some non-strictly positive types
too. Finally, we give general positivity conditions for dealing with inductive-recursive types.
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