Proof Verification with GDV and LambdaPi
It’s a Matter of Trust

Geoff Sutcliffe

University of Miami
Miami, USA

Abstract

Automated Theorem Proving (ATP) is concerned with
the development and use of software that automates
sound reasoning. An ATP system can be required to out-
put a proof that serves as a certificate for the system’s
claim. To ensure that a proof is correct, verification can
be required. If the verifier outputs evidence in a form
that can be independently checked, that evidence serves
as a certificate for the verifier’s claim. The sequence of
finding a proof, verifying the proof, and certifying the
verification, builds an increasing level of trust in the sys-
tem. This paper traces one such path for TPTP format
proofs generated by ATP systems, via the GDV deriva-
tion verifier, and ending at the LambdaPi checker.

1 Introduction

Automated Theorem Proving (ATP) (Robinson and
Voronkov 2001) is concerned with the development and use
of software that automates sound reasoning: the derivation
of conclusions that follow inevitably from known facts. ATP
is at the heart of many computational tasks, including sen-
sitive tasks such as software/hardware verification (Hahnle
and Huisman 2019) and system security (Cook 2018)). ATP
systems are often used as components of more complex
Artificial Intelligence (AI) systems, which means that the
impact of ATP extends into many facets of society. In many
of these applications the use of ATP systems is mission
critical, in the sense that incorrect results from ATP might
have nasty consequences. The importance of verifying the
results from autonomous systems (including ATP systems)
is reflected in the IEEE P2817 standard, which aims to
“identify best practices and provide guidance that supports
the definition of valid verification processes for a range of
autonomous system conﬁgurations”

Facing the demand for error-free results from ATP sys-
tems is the reality that ATP systems are complex pieces of
software, implementing complex calculi with complex data
structures and algorithms (Schulz 2006). Despite best inten-
tions and efforts, incorrect results are possible. To counter
incorrectness, an ATP system can be required to output a

Copyright © 2025 by the authors.
This open access article is published under the Creative Commons

Attribution-NonCommercial 4 () International License.
'standards.ieee.org/ieee/2817/11726/

Frédéric Blanqui

Université Paris-Saclay, ENS Paris-Saclay,
CNRS, INRIA, Laboratoire Méthodes Formelles Eco]e Nationale Supérieure
Gif-sur-Yvette, France

Guillaume Burel
Laboratoire Samovar

d’Informatique pour I’Industrie et I’Entreprise
Evry-Courcouronnes, France

proof that serves as a certificate for the system’s claim. To
ensure that a proof is correct, proof verification can be re-
quired, which serves as a certification (but not a certificate)
of the proof. If the verifier outputs evidence for the certi-
fication in a form that can be independently checked, that
evidence serves as a certificate for the verifier’s claim. As
a concrete example, consider the verification process for
aerospace software, shown in Figure |1} taken from (Sut-
cliffe, Denney, and Fischer 2005)). The “proofs” output by
the ATP system are certificates that the “safety policy”
has been verified. However, certification authorities like the
FAA must be given explicit evidence that the individual tool
components (here, the “ATP” system) yield correct results.
To that end the ATP system’s proofs are given to a “proof
checker” that produces certificates that are attached to the
“code”.

certification
problem | || | synthesis| | o
spec. [(system | || annotate d code N - N
< certificate

r—

.
c pmbf \ proofs
[sa{a{y ——L J‘ simplifier }—‘ ATP { oot

cnecker

domain
theory

certifiable synthesis system

Figure 1: Practical proof checking for program certification

The sequence of finding a proof, verifying the proof, and
certifying the verification, builds an increasing level of trust
in the system. Each step is based on a lack of trust in the pre-
ceeding software, and greater trust in the succeeding soft-
ware. This paper traces one such path for TPTP format
proofs generated by ATP systems (Sutcliffe et al. 2000), via
the GDV derivation verifier (Sutcliffe 2006), and ending at
the LambdaPi checker (Hondet and Blanqui 2020)).

1.1 Verification and Trust

Proof verification can be viewed incrementally:

1. Proofs must be parsible in an agreed language. The TPTP
language (Sutcliffe 2023)) is appropriate. A parser based
on the BNF definition of the TPTP language (Van Gelder
and Sutclitfe 2006]) can be used to check conformance.

https://standards.ieee.org/ieee/2817/11726/

2. Proofs must be written in an agreed upon concrete format
using the agreed language. The established TPTP format
for proofs (Sutclifte et al. 20006) has already been adopted
by many ATP systems.

3. Proofs must be structurally correct. The parents of in-
ferred formula must be documented and exist in the
derivation, the derivation must be acyclic, refutations
must have false roots, assumptions must be discharged,
etc. GDV can be used to check conformance.

4. Proofs must be for the given problem. The leaves of a
derivation must come from the problem.

5. Proofs must be logically complete and correct. This is
where most attention has been focussed in proof verifica-
tion, (often at the expense of the preceeding requirements
that are simply assumed). Proof verification is well re-
searched, with multiple approaches, including formal sys-
tem development, e.g., (Schlichtkrull et al. 2020), empir-
ical observation, the LCF philosophy, e.g., (Gordon, Mil-
ner, and Wadsworth 1979), proof replay, e.g., (Andreotti,
Lachnitt, and Barbosa 2023)), higher-order techniques,
e.g., (Harper, Honsell, and Plotkin 1993), and seman-
tic verification, e.g., (Sutcliffe 2006} Ebner et al. 2016).
There are several proof verification systems that can be
used, including GDV (Sutcliffe 2006), DEDUKTTI (Sail-
lard 2015)), and GAPT (Ebner et al. 2016)).

Empirical testing, as is done by most ATP system devel-
opers, provides a reasonable assurance that an ATP system
outputs syntactically well-formed proofs, but is only a step
towards trusting an ATP system. Formal verification of an
ATP system’s proofs provides evidence of logical correct-
ness. From a user perspective, in addition to being well-
formed and logically correct, proofs must be comprehensi-
ble to the applications (including humans) that need to use
the proofs (Reger 2016). ATP systems that pass verifica-
tion tests consistently over time become trusted, and trusted
proofs that are comprehensible become useful, in the pro-
cess shown in Figure 2] The sequence of events (typically
over years) is ...

1. Problems are given to an untrusted ATP system, which
produces untrusted proofs.

2. The untrusted proofs are checked against expectations and

other ATP systems’ results, e.g., if a problem is expected

to be a theorem and other trusted ATP systems have re-
ported that it is a theorem, hopefully the untrusted system
will agree with that.

The form of the untrusted proofs is checked.

4. If the proofs are well-formed they can be logically veri-
fied.

5. The results of steps 1-4 contribute to an accumulation of
evidence about the ATP system, which induces a level of
trust in the system.

6. After enough positive evidence has accumulated the ATP
system becomes trusted (this is a socio-empirical process)
and its proofs are trusted, e.g., Otter (McCune 2003) is
commonly trusted, thanks to its extensive usage by many
researchers over many years. The decision to trust an ATP
system might be formalized in a framework such as the
Distributed Assertion Management Framework (Al War-

et

dani, Chaudhuri, and Miller 2023)).
7. Trusted proofs can still be subject to the checks of steps
2-4, to further impact the level of trust in the ATP system.
8. If trusted/verified proofs are (human) comprehensible
they are useful to (human) applications.

This paper describes work done to verify proofs output by
ATP systems so that (i) the user has verified proofs, (ii) over
time the user builds trust in the ATP system, and finally
(iii) the user has useful proofs.

2 Background
2.1 TPTP Derivations

The TPTP language (Sutcliffe 2023) is one of the keys to the
success of the TPTP World. The TPTP language is used for
writing both problems and solutions, which enables conve-
nient communication between ATP systems and tools. Prob-
lems and solutions are built from annotated formulae of the
form:
language (name, role, formula, source, useful_info)

The supported languages are cnf (clause normal form),
fof (first-order form), t£f (typed first-order form), and thf
(typed higher-order form). The role, e.g., axiom, lemma,
conjecture, defines the use of the formula. The logical con-
nectives in the TPTP language are !, 2, ~, |, & =>, <=, <=>,
and <~>, for the mathematical connectives V, 3, =, V, A, =,
<, <, and @ respectively. The source and useful_info are
optional. Figure 3] shows a typed first-order form problem.

A derivation written in the TPTP language is a list of
annotated formulae. The role for leaves is typically one of
axiom or conjecture, and the role for inferred formulae is
typically one of negated_conjecture (also used for leaves in
CNF) or plain for inferred formulae. The source is either
a file record for leaves or an inference record for inferred
formulae. A file record contains the problem file name and
the corresponding annotated formulae name in the problem
file. An inference record contains the inference rule name, a
list of useful inference information, and a list of the parent
formulae. The parent formulae list can contain parent anno-
tated formulae names, and nested inference records. Com-
mon types of useful inference information are the semantic
relationship of the inferred formula to its parents as an SZS
ontology value (Sutcliffe 2008) in a status record, special
information about recognized types of complex inference
rules, e.g., Skolemization and explicit splitting, and details
of new symbols introduced in the inference.

The use of SZS values is core to GDV’s approach to veri-
fication, explained in Section@ The SZS ontologies (Sut-
cliffe 2008)) provide values to specify the logical status of
problems and solutions, and to describe logical data. The
Success ontology is relevant here — it provides values for the
logical status of a conjecture with respect to a set of axioms,
e.g., a TPTP problem whose conjecture is a logical conse-
quence of the axioms is tagged as a Theorem, and a model
finder that establishes that a set of axioms (with no conjec-
ture) is consistent should report Satisfiable. The Success on-
tology is also used to specify the semantic relationship be-
tween the parents and inferred formulae of an inference. The
SZS values that are used in this work are shown in Table Il

Accumulation
Problems coumulation | o

of evidence |

A

ATP Trusted? No Untrusted
system proofs

Meets
expt'ns?

T

Verified
proofs

Logical
Verifier

Yes

Trusted
>

Yes

proofs

Useful
proofs

Figure 2: The cycle of trust

SUC Success

ESA EquiSatisfiable

SAT Satisfiable

EQV Equivalent

THM Theorem

CTH CounterTheorem

CAX ContradictoryAxioms
ECS EquiCounterSatisfiable
CSA CounterSatisfiable

CEQ CounterEquivalent

Data has been processed successfully.

There exists a model of the axioms iff there exists a model of the conjecture.

Some interpretations are models of the axioms.

The axioms and conjecture have the same models.

All models of the axioms are models of the conjecture.

All models of the axioms are models of the negated conjecture.

No interpretations are models of the axioms.

There exists a model of the axioms iff there exists a model of the negated conjecture.
Some models of the axioms are models of the negated conjecture.

The axioms and negated conjecture have the same models.

Table 1: SZS ontology values

tff(human_decl, type,human: $tType).

tff(grade_decl, type,grade: $tType).

tff(john_decl,type, john: human).

tff(a_decl, type,a: grade).

tff(f_decl, type,f: grade).

tff(grade_of_decl, type,grade_of: human > grade).
tff(created_equal_decl,type,created_equal: Chuman * human) > $o).

tff(all_created_equal,axiom,
! [Hl:human,H2:human] : created_equal(H1,H2)).

tff(john_got_an_f,axiom,
grade_of(john) = f).

tff(someone_got_an_a,axiom,

! [0: human] : ? [H:human] : (O != H & grade_of(H) = a)).

tff(f_is_not_a,axiom,
fl=a).

tff(there_is_someone_else,conjecture,
? [H:human] : (H != john & created_equal(H,john))).

Figure 3: Example problem

Figure @] shows a proof for the problem in Figure [3] There
are some points salient to verification:

e All the leaves except ax4 are copies of formulae in
the problem. The leaf ax4 is the symmetric version of
£_is_not_a in the problem.

e Many of the formulae are inferred with SZS status THN,
i.e., they are logical consequences of their parents.

* The negated conjecture infl is inferred with SZS status
CTH, its negation is a logical consequence of its parent.

¢ The Skolemized formula inf4 is inferred with SZS status
ESA. Note the information about the Skolem symbol in
the new_symbols record, and the Skolemized variable in
the skolemized record.

¢ Two of the inferred formulae, inf5 and proof, have nested
inference records, and the intermediate inferred formula
has not been recorded in the derivation. For example, in
proof the nested inference between inf3 and ax2 probably
produced ! [X1: human] : grade_of(X1) =f (but it could have
been the symmetric version of that).

2.2 The GDV Derivation Verifier

The GDV derivation verifier (Sutcliffe 2006) was developed
at the start of the century, primarily targeting proofs by refu-
tation in clause normal and first-order form. Over time it has
been incrementally developed to verify proofs in typed first-
order form and typed higher-order form. GDV’s input is a
TPTP format proof, and optionally (required for complete
verification) the problem for which the proof was produced.

GDV checks a TPTP proof in four verification phases:
structural verification, leaf verification, rule-specific verifi-
cation, and inference verification. In the details below, failed
checks that indicate an error in the proof are tagged “(E)”
for “error”. Failed checks that don’t indicate an error in the
proof, but warrant closer inspection, are tagged “(W)” for
“warning”.

Many of the checks rely on a “check-by-ATP”, which
calls a trusted ATP system — either a theorem prover or a
model finder. In all calls to a theorem prover, a model finder
is used to check-by-ATP if the axioms of the check are sat-

tff(human_type, type,human: $tType).

tff(grade_type,type,grade: $tType).

tff(john_decl, type, john: human).

tff(a_decl,type,a: grade).

tff(f_decl, type,f: grade).

tff(grade_of_decl,type,grade_of: human > grade).
tff(created_equal_decl,type,created_equal: (human * human) > $0).
tff(eskl_1_decl,type,eskl_1: human > human).

tff(conl,conjecture,
? [X4: human] : ((X4 != john) & created_equal (X4, john)),
file('SomeoneNotJohn.p',there_is_someone_else)).

tff(axl,axiom,
! [X1: human,X2: human] : created_equal(X1,X2),
file('SomeoneNotJohn.p',all_created_equal)).

tff(ax2,axiom,
grade_of(john) = f,
file('SomeoneNotJohn.p', john_got_an_£f)).

tff(ax3,axiom,
! [X1: human] : ? [X2: human] :
((X1 !=X2) & (grade_of(X2) =a)),
file('SomeoneNotJohn.p',someone_got_an_a)).

tff(ax4,axiom,
al=f,
file('SomeoneNotJohn.p',f_is not_a)).

tff(infl,negated_conjecture,
~ ? [X1: human] : (X1 != john & created_equal(X1,john)),
inference(assume_negation, [status(cth)], [conl])).

tff(inf2,negated_conjecture,
! [X1: human] : (X1 = john | ~ created_equal(X1,john)),
inference(split_conjunct, [status(thm)], [infl])).

tff(inf3,plain,
! [X1: human] : X1 = john,
inference(cn, [status(thm)],
[inference(rw, [status(thm)], [inf2,ax1]1)])).

tff(inf4,plain,
! [X1: human] :
(X1 != eskl1_1(X1) & grade_of(eskl1_1(X1)) = a),
inference(skm, [status(esa) ,new_symbols(skolem, [eskl_1]),
skolemized(X2)], [ax3])).

tff(inf5,plain,
! [X1: human] : grade_of(eskl_1(X1)) != f,
inference(rw, [status(thm)],
[inference(split, [status(thm)], [inf4]),ax4])).

tff(proof,plain,
$false,
inference(sr, [status(thm)],
[inference(rw, [status(thm)], [inf3,ax2]),inf5])).

Figure 4: Example proof

isfiable. Unsatisfiable axioms are acceptable only in certain
cases, e.g., the single parent is the negated conjecture, or the
inferred formula is false, and a (W) or (E) is issued appro-
priately.

As always, calls to ATP systems are subject to resource
constraints, and the systems might not produce results be-
cause a resource limit has been reached. Therefore “(E)”s in
these cases are often not indications of errors, and should be
examined manually.

Structural verification deals with non-logical aspects of
a proof, checking whether the formulae presented as proof
have the right format and relationships. The checks are:

1.
2.

Check the syntax of the annotated formulae. (E)

Check that the annotated formulae are uniquely named.
(E)

Check that all the parents of inferred formulae exist. (E)
Check that all the annotated formulae in the output are
actually used in the proof. (W)

Check that the derivation is acyclic. (E)

If the proof is expected to be a refutation, check that all
roots are false (there can be multiple false when explicit
splitting is used, as explained below), and that there is a
negated conjecture. (E)

Check that all assumptions are propagated and dis-
charged. (E)

Leaf verification deals with the leaves of the derivation, and
their relationship with the problem formulae. The checks
are:

1.
2.

Check-by-ATP that the leaf axioms are satisfiable. (W)
Check that introduced leaves are acceptable, e.g., defini-
tions (Egly and Rath 1996; Reger, Suda, and Voronkov
2016)), assumptions (Urban and Sutcliffe 2009)), tautolo-
gies. (E)

Check that non-introduced leaves are copies of problem
formulae, or can be proved from problem formulae using
check-by-ATP. (E)

Rule specific verification deals with inference rules that re-
quire special treatment. The checks are:

1.
2.

3.

Check explicit splitting (Weidenbach 2001) (E).
Check-by-ATP Skolemization. (E) Verification of
Skolemization steps, including the techniques used in
GDV-LP, is discussed in Section[2.3]

Check-by-ATP local steps of proof by contradiction. (E)

Inference verification deals with the various types of infer-
ences that are made by ATP systems in a proof. The checks
are:

1.

For inference steps with SZS status THM, check-by-ATP
that the inferred formula can be proved from the parent
formulae. (E)

For inference steps with SZS status CTH, check-by-ATP
that the negation of the inferred formula can be proved
from the parent formulae. (E)

For inference steps with SZS status ESA, GDV attempts
to prove equivalence, which is stronger than equisatifia-
bility, and can be allowed to fail. This is implemented by
a check-by-ATP that the inferred formula can be proved
from the parent formulae, and a check-by-ATP that the
parent formulae can be proved from the inferred formula.
(W)

A particular ESA case is Skolemization, which requires
rule specific verification as explained above.

For inference steps with SZS status ECS, GDV attempts
to prove counterequivalence, which is stronger than
equicountersatifiability, and can be allowed to fail. This

is implemented by a check-by-ATP that the negation of
the inferred formula can be proved from the parent for-
mulae, and a check-by-ATP that the parent formulae can
be proved from the negation of the inferred formula. (W)

Figure [5] shows the problem and proof DAG from Fig-

ures[3]and [4] with some of the checks listed above:

* Reading in the problem and proof formulae implements
structural check [Tl

* Traversing the formulae and links implements structural
checks 2Hel

* Passing {ax1,ax2,ax3,ax4} to a trusted model finder is an
example of leaf check [T}

* The four Copied links are examples of structural check 3]
for the “copied” case.

e Passing {f_is_not_a} = ax4 to a trusted theorem prover is
an example of leaf check 3] for the “inferred” case.

* Passing {ASk(ax3)} = inf4 to a trusted theorem prover is
an example of rule specific check 2]

e Passing {ax2,inf3,inf5} = proof to a trusted theorem prover
is an example of inference check|[T}

» Passing {conl} = ~infl to a trusted theorem prover is an
example of inference check 2]

The default trusted theorem provers and model finders
used by GDV are Otter (McCune 2003) and E (Schulz,
Cruanes, and Vukmirovi¢ 2019)) for theorem proving, Para-
dox (Claessen and Smallbone 2018), Vampire (Kovacs and
Voronkov 2013)), and Nitpick (Blanchette and Nipkow 2010)
for model finding. These systems have become trusted
through the process described in Section The level of
trust varies, from very high in those systems that have been
stable and empirically verified for many years, e.g., Otter,
and Paradox, to systems that have been developed more
recently but have undergone extensive testing, e.g., E and
Vampire. The choice of trusted ATP systems can be changed
through command line parameters to GDV, to satisfy the
user’s trust in particular systems.

2.3 Verifying Skolemization Steps

GDV currently has two approaches to verification of
Skolemization steps. The older approach is to try to prove
equivalence between the parent formula and its inferred
Skolemized form — inference check 3. As might be ex-
pected, the check that the Skolemized formula can be in-
ferred from the parent normally fails, and a warning is is-
sued.

The present pragmatic approach is to use a trusted
Skolemizer to produce a trusted Skolemization of the parent
formula, and then use a trusted theorem prover to check-by-
ATP that the inferred formula can be proved from the trusted
Skolemization. This relies on the trusted Skolemizer using
the same Skolem symbol as in the proof, and Skolemizing
the same variable, which in turn relies on the ATP system
providing that information in the inference of the inferred
annotated formula. If the ATP system does not provide the
information then GDV falls back on the older approach. The
trusted Skolemizer is ASk (Steen 2024), which takes the
Skolem symbol and variable as parameters. As Skolemiza-
tion steps are esa - EquiSatisfiable steps, GDV also does a

check-by-ATP that the parent formula can be proved from
the inferred formula.

In the future a third option will be implemented, appeal-
ing to higher-order techniques. A Hilbert e-term will be pro-
duced to define each Skolem term. Leaving the production of
the e-term to the ATP system that produced the proof would
leave an opening for errors in the proof, so a trusted e-term
producer will be used. This approach will allow the Skolem-
ization step to be checked by LambdaPi (see Section [3.1)).

3 GDYV + LambdaPi = GDV-LP
3.1 Dedukti and LambdaPi

Dedukti (Blanqui et al. 2023)) is a formal language for defin-
ing theories in the AlIl-calculus modulo rewriting. It is an
extension of Edinburgh’s Logical Framework LF (Harper,
Honsell, and Plotkin 1993) where types are identified not
only modulo S-equivalence but also modulo user-defined
rewriting rules. It allows for the representation of proofs of
many different logical systems, from first-order to higher-
order logic, the calculus of constructions, and some exten-
sions of it (Blanqui et al. 2023)), using the Curry-de Bruijn-
Howard isomorphism between propositions and types, and
proofs and A-terms.

LambdaPi (Hondet and Blanqui 2020) is a proof assis-
tant for the AII-calculus modulo rewriting, and can read and
output Dedukti files. LambdaPi has a syntax that is more
user-friendly than the Dedukti syntax, and provides some
features that are useful when a direct translation of proofs to
Dedukti is too difficult because the source proof is missing
some information that Dedukti expects, e.g., LambdaPi sup-
ports implicit arguments/coercions, unification hints, proof
tactics, etc., which are useful when representing, e.g., PVS
terms (?), Alethe proofs from SMT solvers (?).

Tools have been developed to export the proofs of
many different systems to the Dedukti or LambdaPi lan-
guages (Coq, OpenTheory, HOL-Light, Isabelle, Lean,
etc.). There exist various checkers for Dedukti files, e.g,
lambdapi (Hondet and Blanqui 2020), dkcheck (Saillard
2015), and kontroli (Féarber 2022).

3.2 GDV-LP

GDV uses trusted ATP systems to produce proofs and mod-
els that serve as certificates for the steps in the proof being
verified. Checking the trusted proofs and models with an in-
dependent system provides another layer of certification and
assurance that the original proof being verified is logically
correct. GDV-LP provides this assurance layer using Lamb-
daPi. To this end, ZenonModulo (Delahaye et al. 2013) is
used for all steps where a check-by-ATP proof is requiredE]
ZenonModulo is configured to output a LambdaPi term for
each proof.

In order to use ZenonModulo’s LambdaPi terms, GDV-
LP produces the necessary files that declare the formulae,
the signatures of the symbols in the terms, a LambdaPi term

2ZenonModulo can deal with only CNF, FOF, and TFF proofs.
In the future Leo-III (Steen and Benzmiiller 2018)), and possibly
also Vampire, will be able to produce LambdaPi terms, thus ex-
tending GDV-LP to TXF and THF proofs.

Copied Copied Copied Leaf verification

{f_is_not_a}F ax4 1 T is] omeone_got,
& ' not_a ' _an3a
1 2 |1 h
Trusted theorem prover :]
T
'
'

} Problem

{axl,ax2,ax3,ax4}
1 Sag

Leaves

{conl} = ~infl <€
Trusted theorem prover

{ASk(ax3)} = inf4 _ esa
{inf4} F ax3

hm
{ax2,inf3,inf5} = proof (t—
1

Trusted theorem prover

Inference verification

Inferred

Root

Structural verification

Figure 5: GDV architecture

for the root of the proof, and a lambdapi package. Zenon-
Modulo’s LambdaPi terms are chained together from the
root term, and passed to lambdapi to be checked. (This ap-
proach was also taken in the EKSTRAKTO (Yacine El Had-
dad, Burel, and Blanqui 2019) verifier, but was limited to
CNF refutations.) A strength of this added layer is that tools
other than lambdapi can also be used to check the LambdaPi
terms, e.g., dkcheck and kontroli.

GDV-LP has been tested on proofs from the TSTP so-
lution library (Sutcliffe 2010), with a 30s CPU time limit
on each ATP system run. The initial testing was on the 255
proofs found by E 3.2.0, for the 287 first-order theorems in
the SYN domain (i.e., E did not find a proof for 32 problems).
E was chosen because it reliably outputs well formed and
structurally correct proofs. The proofs have a range of syn-
tactic characteristics: from 5 to 843 formulae in the proof,
from 4 to 797 inference steps, and a proof depth from 4 to
101. A time limit of 30s was imposed on each proof attempt
by ZenonModulo, and also on LambdaPi for verifying the
chained LambdaPi terms. GDV-LP verified 193 of the 255
proofs (75%). Of the 62 not verified, 47 (75%) were due to
ZenonModulo not being able to find a proof in 30s, and 5
due to LambdaPi not being able to verify the chained Lamb-
daPi term in 30s. Over the 193 verified proofs, there were
2211 inference steps verified by ZenonModulo for their SZS
THM status. E 3.2.0 does not output the necessary information
for Skolemization steps to be verified using trusted Skolem-
izations from ASK, and thus GDV-LP fell back on the older
equivalence checking. There were 166 instances of this over
156 verified proofs, of which 18 instances were incomplete
(the remaining 148 instances were complete because the par-
ent and inferred formulae were unsatisfiable so that the ver-
ification of the steps used proof-by-contradiction).

GDV-LP is implemented in C, and uses the Syste-
mOnTPTP framework (Sutcliffe 2000) to execute the
trusted ATP systems and tools. GDV-LP is available from
github.com/TPTPWorld/GDV.git.

4 Conclusion

This paper has described a framework by which ATP sys-
tems can become trusted. The sequence of finding a proof,
verifying the proof, and certifying the verification, builds an
increasing level of trust in the ATP system. This paper has
traced one such path for TPTP format proofs generated by
ATP systems, via the GDV derivation verifier, and ending
at the LambdaPi checker. The verification steps have been
implemented in the GDV-LP tool.

“Trust” is a key notion in (this form of) proof verification.
There are multiple instances of trust in GDV-LP:

 External sources, including other ATP systems, are trusted
to have produced correct expectations against which re-
sults can be checked.

* Parsers are trusted to check that proofs are syntactically
well-formed.

* The GDV core is trusted to check the structure of proofs.

» ASk is trusted to perform correct Skolemizations.

e Various ATP systems are trusted for inference verifica-
tion: model finders are trusted to check proofs’ leaves for
satisfiability, and theorem provers are trusted to check var-
ious inferences.

* ZenonModulo is trusted to produce LambdaPi terms that
verify inference steps.

e GDV-LP is trusted to chain LambdaPi terms together.

* lambdapi is trusted to check a chain of LambdaPi terms.

Future work includes using LambdaPi to check
Skolemization steps, verification of global infer-
ences such as Vampire’s (Kovacs and Voronkov 2013)
consistent_polarity_flipping, and use of Leo-III or Vampire as
the trusted theorem prover producing LambdaPi terms. The
principles and implementation described in this paper are
expected to be used in the proposed IJCAR 2026 Verifier
& Verifiability Competition - the “ProoVer” competition.
In the big picture, these notions of trust will naturally
expand upstream, as trusted ATP systems are used to
verify the output of subsymbolic reasoning systems, e.g., in
AlphaProof (Hubert, Mehta, and Sartran 2024)).

https://github.com/TPTPWorld/GDV.git

References

[Al Wardani, Chaudhuri, and Miller 2023] Al Wardani, F;
Chaudhuri, K.; and Miller, D. 2023. Formal Reasoning Us-
ing Distributed Assertions. In Sattler, U., and Suda, M., eds.,
Proceedings of the 14th International Symposium on Fron-
tiers of Combining Systems, number 14279 in Lecture Notes
in Computer Science, 176—194. Springer-Verlag.

[Andreotti, Lachnitt, and Barbosa 2023] Andreotti, B,;
Lachnitt, H.; and Barbosa, H. 2023. Carcara: An Efficient
Proof Checker and Elaborator for SMT Proofs in the Alethe
Format. In Sankaranarayanan, S., and Sharygina, N.,
eds., Proceedings of the 13th International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems, number 13993 in Lecture Notes in Computer
Science, Online. Springer-Verlag.

[Blanchette and Nipkow 2010] Blanchette, J., and Nipkow,
T. 2010. Nitpick: A Counterexample Generator for Higher-
Order Logic Based on a Relational Model Finder. In Kauf-
mann, M., and Paulson, L., eds., Proceedings of the 1st Inter-
national Conference on Interactive Theorem Proving, num-
ber 6172 in Lecture Notes in Computer Science, 131-146.
Springer-Verlag.

[Blanqui et al. 2023] Blanqui, F.; Dowek, G.; Grienenberger,
E.; Hondet, G.; and Thiré, F. 2023. A Modular Construction
of Type Theories. Logical Methods in Computer Science
19(1).

[Claessen and Smallbone 2018] Claessen, K., and Small-
bone, N. 2018. Efficient Encodings of First-Order Horn
Formulas in Equational Logic. In Galmiche, D.; Schulz, S.;
and Sebastiani, R., eds., Proceedings of the 9th International
Joint Conference on Automated Reasoning, number 10900
in Lecture Notes in Computer Science, 388—404.

[Coltellacci, Dowek, and Merz 2024] Coltellacci, A.;
Dowek, G.; and Merz, S. 2024. Reconstruction of smt
proofs with lambdapi. In Proceedings of the 22nd Interna-
tional Workshop on Satisfiability Modulo Theories, , CEUR
Workshop Proceedings 3725.

[Cook 2018] Cook, B. 2018. Formal Reasoning About the
Security of Amazon Web Services. In Chockler, H., and
Weissenbacher, G., eds., Proceedings of the 30th Interna-
tional Conference on Computer Aided Verification, num-
ber 10981 in Lecture Notes in Computer Science, 38—47.
Springer-Verlag.

[Delahaye et al. 2013] Delahaye, D.; Doligez, D.; Gibert, F.;
Halmagrand, P.; and Hermant, O. 2013. Zenon Modulo:
When Achilles Outruns the Tortoise using Deduction Mod-
ulo. In McMillan, K.; Middeldorp, A.; and Voronkov, A.,
eds., Proceedings of the 19th International Conference on
Logic for Programming, Artificial Intelligence, and Reason-
ing, number 8312 in Lecture Notes in Computer Science,
274-290. Springer-Verlag.

[Ebner et al. 2016] Ebner, G.; Hetzl, S.; Reis, G.; Riener, M.;
Wolfsteiner, S.; and Zivota, S. 2016. System Description:
GAPT 2.0. In Olivetti, N., and Tiwari, A., eds., Proceed-
ings of the 8th International Joint Conference on Automated

Reasoning, number 9706 in Lecture Notes in Artificial In-
telligence, 293-301.

[Egly and Rath 1996] Egly, U., and Rath, T. 1996. On the
Practical Value of Different Definitional Translations to Nor-
mal Form. In McRobbie, M., and Slaney, J., eds., Proceed-
ings of the 13th International Conference on Automated De-
duction, number 1104 in Lecture Notes in Artificial Intelli-
gence, 403—417. Springer-Verlag.

[Farber 2022] Firber, M. 2022. Safe, Fast, Concurrent Proof
Checking for the lambda-pi Calculus Modulo Rewriting. In
Popescu, A., and Zdancewic, S., eds., Proceedings of the
11th International Conference on Certified Programs and
Proofs, 225-238. Association for Computing Machinery.

[Gordon, Milner, and Wadsworth 1979] Gordon, M.; Milner,
A.; and Wadsworth, C. 1979. Edinburgh LCF: A Mecha-
nized Logic of Computation. Number 78 in Lecture Notes in
Computer Science. Springer.

[Hihnle and Huisman 2019] Héhnle, R., and Huisman, M.
2019. Deductive Software Verification: From Pen-and-Paper
Proofs to Industrial Tools. In Steffen, B., and Woeginger, G.,
eds., Computing and Software Science: State of the Art and
Perspectives, number 10000 in Lecture Notes in Computer
Science. Springer-Verlag. 345-373.

[Harper, Honsell, and Plotkin 1993] Harper, R.; Honsell, F.;
and Plotkin, G. 1993. A Framework for Defining Logics.
Journal of the ACM 40(1):143-184.

[Hondet and Blanqui 2020] Hondet, G., and Blanqui, F.
2020. The New Rewriting Engine of Dedukti. In Ariola, Z.,
ed., Proceedings of the 5th International Conference on For-
mal Structures for Computation and Deduction, number 167
in Leibniz International Proceedings in Informatics, 35:1—
35:16. Dagstuhl Publishing.

[Hondet and Blanqui 2021] Hondet, G., and Blanqui, F.
2021. Encoding of predicate subtyping and proof irrele-
vance in the Ar-calculus modulo theory. In Proceedings of
the 26th International Conference on Types for Proofs and

Programs, Leibniz International Proceedings in Informatics
188.

[Hubert, Mehta, and Sartran 2024] Hubert, T.; Mehta, R.;
and Sartran, L. 2024. AI Achieves Silver-medal Stan-
dard Solving International Mathematical Olympiad Prob-
lems. https://deepmind.google/discover/blog/ai-solves-imo-
problems-at-silver-medal-level/.

[Kovacs and Voronkov 2013] Kovacs, L., and Voronkov, A.
2013. First-Order Theorem Proving and Vampire. In Shary-
gina, N., and Veith, H., eds., Proceedings of the 25th Inter-
national Conference on Computer Aided Verification, num-
ber 8044 in Lecture Notes in Artificial Intelligence, 1-35.
Springer-Verlag.

[McCune 2003] McCune, W. 2003. Otter 3.3 Reference
Manual. Technical Report ANL/MSC-TM-263, Argonne
National Laboratory, Argonne, USA.

[Reger, Suda, and Voronkov 2016] Reger, G.; Suda, M.; and
Voronkov, A. 2016. New Techniques in Clausal Form Gen-
eration. In Benzmiiller, C.; Sutcliffe, G.; and Rojas, R., eds.,
Proceedings of the 2nd Global Conference on Artificial In-
telligence, number 41 in EPiC Series in Computing, 11-23.
EasyChair Publications.

[Reger 2016] Reger, G. 2016. Better Proof Output for Vam-
pire. In Kovacs, L., and Voronkov, A., eds., Proceedings
of the 3rd Vampire Workshop, number 44 in EPiC Series in
Computing, 46—60. EasyChair.

[Robinson and Voronkov 2001] Robinson,
Voronkov, A. 2001.
ing. Elsevier Science.

[Saillard 2015] Saillard, R. 2015. Typechecking in the
lambda-Pi-Calculus Modulo : Theory and Practice. Ph.D.
Dissertation, Ecole Nationale Supérieure des Mines de Paris,
Paris, France.

[Schlichtkrull et al. 2020] Schlichtkrull, A.; Blanchette, J.;
Traytel, D.; and Waldmann, U. 2020. Formalizing Bach-
mair and Ganzinger’s Ordered Resolution Prover. Journal
of Automated Reasoning 64(7):1169-1195.

[Schulz, Cruanes, and Vukmirovi¢ 2019] Schulz, S.; Cru-
anes, S.; and Vukmirovi¢, P. 2019. Faster, Higher, Stronger:
E 2.3. In Fontaine, P., ed., Proceedings of the 27th Interna-
tional Conference on Automated Deduction, number 11716
in Lecture Notes in Computer Science, 495-507. Springer-
Verlag.

[Schulz 2006] Schulz, S. 2006. Algorithms and Data Struc-
tures for First-Order Equational Deduction. In Benzmiiller,
C.; Fischer, B.; and Sutcliffe, G., eds., Proceedings of the
6th International Workshop on the Implementation of Log-
ics, number 212 in CEUR Workshop Proceedings, 1-6.

[Steen and Benzmiiller 2018] Steen, A., and Benzmiiller, C.
2018. The Higher-Order Prover Leo-III. In Galmiche, D.;
Schulz, S.; and Sebastiani, R., eds., Proceedings of the 8th
International Joint Conference on Automated Reasoning,
number 10900 in Lecture Notes in Artificial Intelligence,
108-116.

[Steen 2024] Steen, A. 2024. ask v0.2.2. DOI: 10.5281/zen-
0do.14181705.

[Sutcliffe et al. 2006] Sutcliffe, G.; Schulz, S.; Claessen, K.;
and Van Gelder, A. 2006. Using the TPTP Language for
Writing Derivations and Finite Interpretations. In Furbach,
U., and Shankar, N., eds., Proceedings of the 3rd Inter-
national Joint Conference on Automated Reasoning, num-
ber 4130 in Lecture Notes in Artificial Intelligence, 67-81.
Springer.

[Sutcliffe, Denney, and Fischer 2005] Sutcliffe, G.; Denney,
E.; and Fischer, B. 2005. Practical Proof Checking for Pro-
gram Certification. In Sutcliffe, G.; Fischer, B.; and Schulz,
S., eds., Proceedings of the Workshop on Empirically Suc-
cessful Classical Automated Reasoning.

[Sutcliffe 2000] Sutcliffe, G. 2000. SystemOnTPTP. In
McAllester, D., ed., Proceedings of the 17th International
Conference on Automated Deduction, number 1831 in Lec-
ture Notes in Artificial Intelligence, 406410. Springer-
Verlag.

[Sutcliffe 2006] Sutcliffe, G. 2006. Semantic Derivation
Verification: Techniques and Implementation. International
Journal on Artificial Intelligence Tools 15(6):1053—-1070.

[Sutcliffe 2008] Sutcliffe, G. 2008. The SZS Ontologies for
Automated Reasoning Software. In Sutcliffe, G.; Rudnicki,

A., and
Handbook of Automated Reason-

P.; Schmidt, R.; Konev, B.; and Schulz, S., eds., Proceed-
ings of the LPAR Workshops: Knowledge Exchange: Auto-
mated Provers and Proof Assistants, and the 7th Interna-

tional Workshop on the Implementation of Logics, number
418 in CEUR Workshop Proceedings, 38—49.

[Sutcliffe 2010] Sutcliffe, G. 2010. The TPTP World - In-
frastructure for Automated Reasoning. In Clarke, E., and
Voronkov, A., eds., Proceedings of the 16th International
Conference on Logic for Programming, Artificial Intelli-
gence, and Reasoning, number 6355 in Lecture Notes in Ar-
tificial Intelligence, 1-12. Springer-Verlag.

[Sutcliffe 2023] Sutcliffe, G. 2023. The Logic Languages of
the TPTP World. Logic Journal of the IGPL 31(6):1153—
1169.

[Urban and Sutcliffe 2009] Urban, J., and Sutcliffe, G. 2009.
ATP-based Cross Verification of Mizar Proofs: Method, Sys-
tems, and First Experiments. Journal of Mathematics in
Computer Science 2(2):231-251.

[Van Gelder and Sutcliffe 2006] Van Gelder, A., and Sut-
cliffe, G. 2006. Extending the TPTP Language to Higher-
Order Logic with Automated Parser Generation. In Furbach,
U., and Shankar, N., eds., Proceedings of the 3rd Interna-
tional Joint Conference on Automated Reasoning, number
4130 in Lecture Notes in Artificial Intelligence, 156—-161.
Springer-Verlag.

[Weidenbach 2001] Weidenbach, C. 2001. Combining Su-
perposition, Sorts and Splitting. In Robinson, A., and
Voronkov, A., eds., Handbook of Automated Reasoning. El-
sevier Science. 1965-2011.

[Yacine El Haddad, Burel, and Blanqui 2019] Yacine
El Haddad, M.; Burel, G.; and Blanqui, F. 2019. EK-
STRAKTO A tool to reconstruct Dedukti proofs from TSTP
files. In Reis, G., and Barbosa, H., eds., Proceedings of
the 6th Workshop on Proof eXchange for Theorem Proving,
number 399 in Electronic Proceedings in Theoretical
Computer Science, 27-35.

	Introduction
	Verification and Trust

	Background
	TPTP Derivations
	The GDV Derivation Verifier
	Verifying Skolemization Steps

	GDV + LambdaPi = GDV-LP
	Dedukti and LambdaPi
	GDV-LP

	Conclusion

