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Abstract
The λΠ-calculus modulo theory is a logical framework in which many logical systems can be expressed
as theories. We present such a theory, the theory U , where proofs of several logical systems can be
expressed. Moreover, we identify a sub-theory of U corresponding to each of these systems, and
prove that, when a proof in U uses only symbols of a sub-theory, then it is a proof in that sub-theory.
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1 Introduction

The λΠ-calculus modulo theory (λΠ/≡) [13], implemented in the system Dedukti [3, 29],
is a logical framework, that is a framework to define theories. It generalizes some previously
proposed frameworks: Predicate logic [28], λ-Prolog [32], Isabelle [34], the Edinburgh logical
framework [27], also called the λΠ-calculus, Deduction modulo theory [17, 18], Pure type
systems [6, 39], and Ecumenical logic [36, 16, 35, 25]. It is thus an extension of Predicate
logic that provides the possibility for all symbols to bind variables, a syntax for proof-terms, a
notion of computation, a notion of proof reduction for axiomatic theories, and the possibility
to express both constructive and classical proofs.

λΠ/≡ enables to express all theories that can be expressed in Predicate logic, such as
geometry, arithmetic, and set theory, but also Simple type theory [10] and the Calculus of
constructions [12], that are less easy to define in Predicate logic.

We present a theory in λΠ/≡, the theory U , where all proofs of Minimal, Constructive,
and Ecumenical predicate logic; Minimal, Constructive, and Ecumenical simple type theory;
Simple type theory with predicate subtyping, prenex predicative polymorphism, or both;
the Calculus of constructions, and the Calculus of constructions with prenex predicative
polymorphism can be expressed. This theory is therefore a candidate for a universal theory,
where proofs developed in implementations of Classical predicate logic (such as automated
theorem proving systems, SMT solvers, etc.), Classical simple type theory (such as HOL 4,
HOL Light, Isabelle/HOL, etc.), the Calculus of constructions (such as Coq, Matita, Lean,
etc.), and Simple type theory with predicate subtyping and prenex polymorphism (such as
PVS), can be expressed.

Moreover, the proofs of the theory U can be classified as proofs in Minimal predicate logic,
Constructive Predicate logic, etc. just by identifying the axioms they use, akin to proofs
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?:2 Some axioms for mathematics

in geometry that can be classified as proofs in Euclidean, hyperbolic, elliptic, neutral, etc.
geometries. More precisely, we identify sub-theories of the theory U that correspond to each
of these theories, and we prove that when a proof in U uses only symbols of a sub-theory,
then it is a proof in that sub-theory.

In Section 2, we recall the definition of λΠ/≡ and of a theory. In Section 3, we introduce
the theory U step by step. In Section 4, we provide a general theorem on sub-theories in
λΠ/≡, and prove that every fragment of U , including U itself, is indeed a theory, that is, it
is defined by a confluent and type-preserving rewriting systems. Finally, in Section 5, we
detail the sub-theories of U that correspond to the above mentioned systems.

2 The λΠ-calculus modulo theory

λΠ/ ≡ is an extension of the Edinburgh logical framework [27] with a primitive notion of
computation defined with rewriting rules [14, 38].

The terms are those of the Edinburgh logical framework

t, u = c | x | TYPE | KIND | Πx : t, u | λx : t, u | t u

where c belongs to a finite or infinite set of constants C and x to an infinite set V of variables.
The terms TYPE and KIND are called sorts. The term Πx : t, u is called a product. It is
dependent if the variable x occurs free in u. Otherwise, it is simply written t → u. Terms
are also often written A, B, etc. The set of constants of a term t is written const(t).

A rewriting rule is a pair of terms ℓ ↪→ r, such that ℓ = c ℓ1 . . . ℓn, where c is a
constant. If R is a set of rewriting rules, we write ↪→R for the smallest relation closed by
term constructors and substitution containing R, ↪→β for the usual β-reduction, ↪→βR for
↪→β ∪ ↪→R, and ≡βR for the smallest equivalence relation containing ↪→βR.

The typing rules of λΠ/ ≡ are given in Figure 1. The difference with the rules of the
Edinburgh logical framework is that, in the rule (conv), types are identified modulo ≡βR
instead of just ≡β . In a typing judgement Γ ⊢Σ,R t : A, the term t is given the type A with
respect to three parameters: a signature Σ that assigns a type to the constants of t, a context
Γ that assigns a type to the free variables of t, and a set of rewriting rules R. A context Γ is
a list of declarations x1 : B1, . . . , xm : Bm formed with a variable and a term. A signature Σ
is a list of declarations c1 : A1, . . . , cn : An formed with a constant and a closed term, that
is a term term with no free variables. This is why the rule (const) requires no context for
typing A. We write |Σ| for the set {c1, . . . , cn}, and Λ(Σ) for the set of terms t such that
const(t) ⊆ |Σ|. We say that a rewriting rule ℓ ↪→ r is in Λ(Σ) if ℓ and r are, and a context
x1 : B1, . . . , xm : Bm is in Λ(Σ) if B1, . . . , Bm are. It is often convenient to group constant
declarations and rules into small clusters, called “axioms”.

A relation ↪→ preserves typing in Σ, R if, for all contexts Γ and terms t, u and A of Λ(Σ),
if Γ ⊢Σ,R t : A and t ↪→ u, then Γ ⊢Σ,R u : A. The relation ↪→β preserves typing as soon as
↪→βR is confluent (see for instance [7]) for, in this case, the product is injective modulo ≡βR:
Πx : A, B ≡βR Πx : A′, B′ iff A ≡βR A′ and B ≡βR B′. The relation ↪→R preserves typing if
every rewriting rule ℓ ↪→ r preserves typing, that is: for all contexts Γ, substitutions θ and
terms A of Λ(Σ), if Γ ⊢Σ,R θl : A then Γ ⊢Σ,R θr : A.

Although typing is defined with arbitrary signatures Σ and sets of rewriting rules R, we
are only interested in sets R verifying some confluence and type-preservation properties.

▶ Definition 1 (System, theory). A system is a pair Σ, R such that each rule of R is in Λ(Σ).
It is a theory if ↪→βR is confluent on Λ(Σ), and every rule of R preserves typing in Σ, R.



F. Blanqui, G. Dowek, É. Grienenberger, G. Hondet, and F. Thiré ?:3

⊢Σ,R [ ] well-formed
(empty)

Γ ⊢Σ,R A : s

⊢Σ,R Γ, x : A well-formed (decl)

⊢Σ,R Γ well-formed
Γ ⊢Σ,R TYPE : KIND

(sort)

⊢Σ,R Γ well-formed ⊢Σ,R A : s

Γ ⊢Σ,R c : A
(const) c : A ∈ Σ

⊢Σ,R Γ well-formed
Γ ⊢Σ,R x : A

(var) x : A ∈ Γ

Γ ⊢Σ,R A : TYPE Γ, x : A ⊢Σ,R B : s

Γ ⊢Σ,R Πx : A, B : s
(prod)

Γ ⊢Σ,R A : TYPE Γ, x : A ⊢Σ,R B : s Γ, x : A ⊢Σ,R t : B

Γ ⊢Σ,R λx : A, t : Πx : A, B
(abs)

Γ ⊢Σ,R t : Πx : A, B Γ ⊢Σ,R u : A

Γ ⊢Σ,R t u : (u/x)B
(app)

Γ ⊢Σ,R t : A Γ ⊢Σ,R B : s

Γ ⊢Σ,R t : B
(conv) A ≡βR B

Figure 1 Typing rules of λΠ/≡ with signature Σ and rewriting rules R

Therefore, in a theory, ↪→βR preserves typing since ↪→β preserves typing (for ↪→βR is
confluent) and ↪→R preserves typing (for every rule preserves typing). We recall two other
basic properties of λΠ/≡ we will use in Theorem 7:

▶ Lemma 2. If Γ ⊢Σ,R t : A, then either A = KIND or Γ ⊢Σ,R A : s for some sort s.
If Γ ⊢Σ,R Πx : A, B : s, then Γ ⊢Σ,R A : TYPE.

3 The theory U

Object-terms

The notions of term, proposition, and proof are not primitive in λΠ/≡. The first axioms of
the theory U introduce these notions. We first define a notion analogous to the Predicate
logic notion of term, to express the objects the theory speaks about, such as the natural
numbers. As all expressions in λΠ/ ≡ are called “terms”, we shall call these expressions
“object-terms”, to distinguish them from the other terms.

The easiest way to build the notion of object-term in λΠ/≡ would be to declare a constant
I of type TYPE and constants of type I → ... → I → I for the function symbols, for instance
a constant 0 of type I and a constant succ of type I → I. The object-terms, for instance
(succ (succ 0)) and (succ x), would then just be λΠ/≡ terms of type I and, in an object-term,
the variables would be λΠ/ ≡ variables of type I. If we wanted to have object-terms of
several sorts, like in Many-sorted predicate logic, we could just declare several constants I1,
I2, ..., In of type TYPE. But these sorts would be mixed with the other terms of type TYPE,
which we will introduce later. Instead, we declare a constant Set of type TYPE, a constant ι

FSCD 2021
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of type Set, and a constant El to embed the terms of type Set into terms of type TYPE

Set : TYPE (Set-decl)
ι : Set (ι-decl)
El : Set → TYPE (El-decl)

so that the symbol I can be replaced with the term El ι. If we want to have object-terms of
several sorts, we declare several constants ι1, ι2, etc. of type Set. The types of object-terms
then have the form El A and are distinguished among the other terms of type TYPE.

Assigning the type Set → TYPE to the constant El uses the fact that λΠ/ ≡ supports
dependent types.

Propositions

Just like λΠ/ ≡ does not contain a primitive notion of object-term, it does not contain a
primitive notion of proposition, but tools to define this notion. To do so, in the theory U , we
declare a constant Prop of type TYPE

Prop : TYPE (Prop-decl)

and predicate symbols are then just constants of type El ι → . . . → El ι → Prop. Propositions
are then λΠ/≡ terms of type Prop.

Implication

In the theory U , we then declare a constant for implication

⇒ : Prop → Prop → Prop (written infix) (⇒-decl)

Proofs

Predicate logic defines a language for terms and propositions, but proofs have to be defined in
a second step, for instance as derivations in natural deduction, sequent calculus, etc. These
derivations, like object-terms and propositions, are trees. Therefore, they can be represented
as λΠ/≡ terms.

Using the Brouwer-Heyting-Kolmogorov interpretation, a proof of the proposition A ⇒ B

should be a λΠ/≡ term expressing a function mapping proofs of A to proofs of B. Then,
using the Curry-de Bruijn-Howard correspondence, the type of this term should be the
proposition A ⇒ B itself. But, this is not possible in the theory U yet, as the proposition
A ⇒ B has the type Prop, and not the type TYPE. So we introduce an embedding Prf of
propositions into types, mapping each proposition A to the type Prf A of its proofs

Prf : Prop → TYPE (Prf-decl)

Note that this embedding is not surjective. In particular Set, El ι, and Prop are not types
of proofs. So, there are more types than propositions, and propositions and types are not
fully identified.

According to the Brouwer-Heyting-Kolmogorov interpretation, a proof of A ⇒ A is a
λΠ/ ≡ term expressing a function mapping proofs of A to proofs of A. In particular, the
identity function λx : Prf A, x mapping each proof of A to itself is a proof of A⇒A. According
to the Curry-de Bruijn-Howard correspondence, this term should have the type Prf (A ⇒ A),
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but it has the type Prf A → Prf A. So, the types Prf (A ⇒ A) and Prf A → Prf A must be
identified. To do so, we use the fact that λΠ/≡ allows the declaration of rewriting rules, so
that Prf (A ⇒ A) rewrites to Prf A → Prf A

Prf (x ⇒ y) ↪→ Prf x → Prf y (⇒-red)

In the theory U , the Brouwer-Heyting-Kolmogorov interpretation of proofs for implication
is made explicit: it is the rule (⇒-red).

Universal quantification

Unlike implication, the universal quantifier binds a variable. Thus, we express the proposition
∀z A as the proposition ∀ (λz : El ι, A) [10, 32, 34, 27], yielding the type (El ι → Prop) → Prop
for the constant ∀ itself. But, we want to allow quantification over variables of any type
El B, for B of type Set. Thus, we generalize this type to

∀ : Πx : Set, (El x → Prop) → Prop (∀-decl)

and we write ∀ ι (λz : El ι, A) for the proposition ∀z A.
Just like for the implication, we declare a rewriting rule expressing that the type of the

proofs of the proposition ∀ x p is the type of functions mapping each z of type El x to a
proof of p z

Prf (∀ x p) ↪→ Πz : El x, Prf (p z) (∀-red)

Again, the Brouwer-Heyting-Kolmogorov interpretation of proofs for the universal quanti-
fier is made explicit: it is this rule (∀-red).

Other constructive connectives and quantifiers

We define the other connectives and quantifiers, à la Russell, for instance Prf (x ∧ y) as
Πz : Prop, (Prf x → Prf y → Prf z) → Prf z. In this definition, we do not use the quantifier
∀ of the theory U (so far, in the theory U , we can quantify over the type El ι, but not over
the type Prop), but the quantifier Π of the logical framework λΠ/≡ itself.

Remark that, per se, the quantification on the variable z of type Prop is predicative, as
the term Πz : Prop, (Prf x → Prf y → Prf z) → Prf z has type TYPE and not Prop. But, the
rule rewriting Prf (x ∧ y) to Πz : Prop, (Prf x → Prf y → Prf z) → Prf z introduces some
impredicativity, as x ∧ y of type Prop is “defined” as the inverse image, for the embedding
Prf, of the type Πz : Prop, (Prf x → Prf y → Prf z) → Prf z, that contains a quantification
on a variable of type Prop

⊤ : Prop (⊤-decl)
Prf ⊤ ↪→ Πz : Prop, Prf z → Prf z (⊤-red)
⊥ : Prop (⊥-decl)
Prf ⊥ ↪→ Πz : Prop, Prf z (⊥-red)
¬ : Prop → Prop (¬-decl)
Prf (¬ x) ↪→ Prf x → Πz : Prop, Prf z (¬-red)
∧ : Prop → Prop → Prop (written infix) (∧-decl)
Prf (x ∧ y) ↪→ Πz : Prop, (Prf x → Prf y → Prf z) → Prf z (∧-red)
∨ : Prop → Prop → Prop (written infix) (∨-decl)

FSCD 2021
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Prf (x ∨ y) ↪→ Πz : Prop, (Prf x → Prf z) → (Prf y → Prf z) → Prf z (∨-red)
∃ : Πa : Set, (El a → Prop) → Prop (∃-decl)
Prf (∃ a p) ↪→ Πz : Prop, (Πx : El a, Prf (p x) → Prf z) → Prf z (∃-red)

Infinity

Now that we have the symbols ⊤ and ⊥, we can express that the type El ι is infinite, that is,
that there exists a non-surjective injection from this type to itself. We call this non-surjective
injection succ. To express its injectivity, we introduce its left inverse pred. To express its
non-surjectivity, we introduce an element 0, that is not in its image positive [19]. This choice
of notation enables the definition of natural numbers as some elements of type El ι

0 : El ι (0-decl)
succ : El ι → El ι (succ-decl)
pred : El ι → El ι (pred-decl)
pred 0 ↪→ 0 (pred-red1)
pred (succ x) ↪→ x (pred-red2)
positive : El ι → Prop (positive-decl)
positive 0 ↪→ ⊥ (positive-red1)
positive (succ x) ↪→ ⊤ (positive-red2)

Classical connectives and quantifiers

The disjunction in constructive logic and in classical logic are governed by different deduction
rules, thus they have a different meaning, and they should be expressed with different symbols,
for instance ∨ for the constructive disjunction and ∨c for the classical one, just like, in
classical logic, we use two different symbols for the inclusive disjunction and the exclusive
one. These constructive and classical disjunctions need not belong to different languages,
but they can coexist in the same Ecumenical one [36, 16, 35, 25].

Many Ecumenical logics consider the constructive connectives and quantifiers as primitive
and attempt to define the classical ones from them, using the negative translation as a
definition. In the theory U , we have chosen to define the classical connectives and quantifiers
as in [1], for instance A ∨c B as (¬¬A) ∨ (¬¬B). Using these definitions, the proposition
(P ∧c Q) ⇒c P is (¬¬((¬¬P ) ∧ (¬¬Q))) ⇒ (¬¬P ), which is not exactly the negative
translation ¬¬((¬¬((¬¬P ) ∧ (¬¬Q))) ⇒ (¬¬P )) of (P ∧ Q) ⇒ P , as the double negation
at the root of the proposition is missing. As we already have a distinction between the
proposition A and the type Prf A of its proofs, we can just include this double negation into
the constant Prf, introducing a classical version Prfc of this constant

Prfc : Prop → TYPE (Prfc-decl)
Prfc ↪→ λx : Prop, Prf (¬ ¬ x) (Prfc-red)
⇒c : Prop → Prop → Prop (written infix) (⇒c-decl)
⇒c ↪→ λx : Prop, λy : Prop, (¬ ¬ x) ⇒ (¬ ¬ y) (⇒c-red)
∧c : Prop → Prop → Prop (written infix) (∧c-decl)
∧c ↪→ λx : Prop, λy : Prop, (¬ ¬ x) ∧ (¬ ¬ y) (∧c-red)
∨c : Prop → Prop → Prop (written infix) (∨c-decl)
∨c ↪→ λx : Prop, λy : Prop, (¬ ¬ x) ∨ (¬ ¬ y) (∨c-red)
∀c : Πa : Set, (El a → Prop) → Prop (∀c-decl)
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∀c ↪→ λa : Set, λp : (El a → Prop), ∀ a (λx : El a, ¬ ¬(p x)) (∀c-red)
∃c : Πa : Set, (El a → Prop) → Prop (∃c-decl)
∃c ↪→ λa : Set, λp : (El a → Prop), ∃ a (λx : El a, ¬ ¬(p x)) (∃c-red)

Note that ⊤c and ⊥c are ⊤ and ⊥, by definition. Note also that ¬¬¬A is equivalent to
¬A, so we do not need to duplicate negation either.

Propositions as objects

So far, we have mainly reconstructed the Predicate logic notions of object-term, proposition,
and proof. We can now turn to two notions coming from Simple type theory: propositions
as objects and functionality.

Simple type theory can be expressed in Predicate logic and Predicate logic is a restriction
of Simple type theory, allowing quantification on variables of type ι only. So, once we
have reconstructed Predicate logic, we can either define Simple type theory as a theory in
Predicate logic or as an extension of Predicate logic. In the theory U , we choose the second
option, which leads to a simpler expression of Simple type theory, avoiding the stacking
of two encodings. Simple type theory is thus expressed by adding two axioms on top of
Predicate logic: one for propositions as objects and one for functionality.

Let us start with propositions as objects. So far, the term ι is the only closed term of
type Set. So, we can only quantify over the variables of type El ι. In particular, we cannot
quantify over propositions. To do so, we just need to declare a constant o of type Set and a
rule identifying El o and Prop

o : Set (o-decl)
El o ↪→ Prop (o-red)

Note that just like there are no terms of type ι, but terms, such as 0, which have type
El ι, there are no terms of type o, but terms, such as ⊤, that have type El o, that is Prop.

Applying the constant ∀ to the constant o, we obtain a term of type (El o → Prop) →
Prop, that is (Prop → Prop) → Prop, and we can express the proposition ∀p (p ⇒ p) as
∀ o (λp : Prop, p ⇒ p). The type Prf (∀ o (λp : Prop, p ⇒ p)) of the proofs of this proposition
rewrites to Πp : Prop, Prf p → Prf p. So, the term λp : Prop, λx : Prf p, x is a proof of this
proposition.

Functionality

Besides ι and o, we introduce more types in the theory, for functions and sets. To do so, we
declare a constant ; and a rewriting rule

; : Set → Set → Set (written infix) (;-decl)
El (x ; y) ↪→ El x → El y (;-red)

For instance, these rules enable the construction of the λΠ/ ≡ term ι ; ι of type Set
that expresses the simple type ι → ι. The λΠ/≡ term El (ι ; ι) of type TYPE rewrites to
El ι → El ι. The simply typed term λx : ι, x of type ι → ι is then expressed as the term
λx : El ι, x of type El ι → El ι that is El (ι ; ι).

Dependent function types

The axiom (;) enables us to give simple types to the object-terms expressing functions. We
can also give them dependent types, with the dependent versions of this axiom

FSCD 2021
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;d : Πx : Set, (El x → Set) → Set (written infix) (;d-decl)
El (x ;d y) ↪→ Πz : El x, El (y z) (;d-red)

Note that, if we apply the constant ;d to a term t and a term λz : El t, u, where the
variable z does not occur in u, then El (t ;d λz : El t, u) rewrites to El t → El u, just like
El (t ; u). Thus, the constant ;d is useful only if we can build a term λz : El t, u where
the variable z occurs in u. With the symbols we have introduced so far, this is not possible.
Just like we have a constant ι of type Set, we could add a constant array of type El ι → Set
such that array n is the type of arrays of length n. We could then construct the term
(ι ;d λx : El ι, array x) of type Set and the type El (ι ;d λx : El ι, array x) that rewrites to
Πx : El ι, El (array x), would be the type of functions mapping a natural number n to an
array of length n. So, this symbol ;d becomes useful, only if we add such a constant array,
object-level dependent types, or the symbols π or psub below.

Dependent implication

In the same way, we can add a dependent implication, where, in the proposition A ⇒ B, the
proof of A may occur in B

⇒d : Πx : Prop, (Prf x → Prop) → Prop (written infix) (⇒d-decl)
Prf (x ⇒d y) ↪→ Πz : Prf x, Prf (y z) (⇒d-red)

Proofs in object-terms

To construct an object-term, we sometimes want to apply a function symbol to other object-
terms and also to proofs. For instance, we may want to apply the Euclidean division div
to two numbers t and u and to a proof that u is positive. To be able to so, we introduce
another constant π and the corresponding rewriting rule

π : Πx : Prop, (Prf x → Set) → Set (π-decl)
El (π x y) ↪→ Πz : Prf x, El (y z) (π-red)

This way, we can give, to the constant div, the type

El (ι ; ι ;d λy : El ι, π (positive y) (λz : Prf (positive y), ι))

If we also have a constant eqι of type El (ι ; ι ; o), we can then express the proposition

positive y ⇒d λp : Prf (positive y), eqι (div x y p) (div x y p)

usually written y > 0 ⇒ x/y = x/y. The proposition x/y = x/y is well-formed, but it
contains an implicit free variable p, for a proof of y > 0. This variable is bound by the
implication, that needs therefore to be a dependent implication.

Proof irrelevance

If p and q are two non convertible proofs of the proposition positive 2, the terms div 7 2 p

and div 7 2 q are not convertible. As a consequence, even if we had a reflexivity axiom for
the aforementioned equality eqι, the proposition

eqι (div 7 2 p) (div 7 2 q)

would not be provable.
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To make these terms convertible, we embed the theory into an extended one, that contains
another constant

div† : El (ι ; ι ; ι)

and a rule
div x y p ↪→ div† x y

and we define convertibility in this extended theory. This way, the terms div 7 2 p and
div 7 2 q are convertible, as they both reduce to div† 7 2.

Note that, in the extended theory, the constant div† enables the construction of the
erroneous term div† 1 0. But the extended theory is only used to define the convertibility
in the restricted one and this term is not a term of the restricted theory. It is not even the
reduct of a term of the form div 1 0 r [20, 9].

Dependent pairs and predicate subtyping

Instead of declaring a constant div that takes three arguments: a number t, a number u, and
a proof p that u is positive, we can declare a constant that takes two arguments: a number t

and a pair pair ι positive u p formed with a number u and a proof p that u is positive.
The type of the pair pair ι positive u p is written psub ι positive, or informally {x : ι |

positive x}. It can be called “the type of positive numbers”. It is a subtype of the type of
natural numbers defined with the predicate positive. Therefore, the symbol psub introduces
predicate subtyping. We thus declare a constant psub and a constant pair

psub : Πt : Set, (El t → Prop) → Set (psub-decl)
pair : Πt : Set, Πp : El t → Prop, Πm : El t, Prf (p m) → El (psub t p) (pair-decl)

This way, instead of giving the type El (ι ; ι ;d λy : Prf (positive y), ι) to the constant
div, we can give it the type El (ι ; psub ι positive ; ι).

To avoid introducing a new positive number pair ι positive 3 p with each proof p that 3
is positive, we make this symbol pair proof irrelevant [20, 9] by introducing a symbol pair†

and a rewriting rule that discards the proof

pair† : Πt : Set, Πp : El t → Prop, El t → El (psub t p) (pair†-decl)
pair t p m h ↪→ pair† t p m (pair-red)

This declaration and this rewriting rule are not part of the theory U but of the theory U†

used to define the conversion on the terms of U .
Finally, we declare the projections fst and snd together with an associated rewriting rule

fst : Πt : Set, Πp : El t → Prop, El (psub t p) → El t (fst-decl)
fst t p (pair† t′ p′ m) ↪→ m (fst-red)
snd : Πt : Set, Πp : El t → Prop, Πm : El (psub t p), Prf (p (fst t p m)) (snd-decl)

Prenex predicative type quantification in types

Using the symbols of the theory U introduced so far, the symbol for equality of elements
of type ι is eqι of type El (ι ; ι ; o). This equality symbol is not polymorphic. Indeed,
it cannot be used to express the equality of, for example, functions of type ι ; ι. This
motivates the introduction of object-level polymorphism [24, 37]. However extending Simple
type theory with object-level polymorphism makes it inconsistent [30, 11], and similarly it
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makes the theory U inconsistent. So, object-level polymorphism in U is restricted to prenex
polymorphism. To do so, we introduce a new constant Scheme of type TYPE, a constant Els
to embed the terms of type Scheme into terms of type TYPE, a constant ↑ to embed the terms
of type Set into terms of type Scheme and a rule connecting these embeddings

Scheme : TYPE (Scheme-decl)
Els : Scheme → TYPE (Els-decl)
↑ : Set → Scheme (↑-decl)
Els (↑ x) ↪→ El x (↑-red)

We then introduce a quantifier for the variables of type Set in the terms of type Scheme and
the associated rewriting rule

A: (Set → Scheme) → Scheme ( A-decl)
Els ( A

p) ↪→ Πx : Set, Els (p x) ( A-red)

This way, we can give the polymorphic type Els ( A(λA : Set, ↑ (A ; A ; o))) to the equal-
ity eq. In the same way, the type of the identity function is Els ( A(λA : Set, ↑ (A ; A))). It
rewrites to ΠA : Set, El A → El A. Therefore, it is inhabited by the term λA : Set, λx : El A, x.

Prenex predicative type quantification in propositions

When we express the reflexivity of the polymorphic equality, we need also to quantify over a
type variable, but now in a proposition. To be able to do so, we introduce another quantifier
and its associated rewriting rule

A: (Set → Prop) → Prop ( A-decl)
Prf ( A

p) ↪→ Πx : Set, Prf (p x) ( A-red)

This way, the reflexivity of equality can be expressed as ( A(λA : Set, ∀ A (λx : El A, eq A x x))).

The theory U : bringing everything together

The theory U is formed with the 38 axioms with a black bar at the beginning of the line:
(Set), (El), (ι), (Prop), (Prf), (⇒), (∀), (⊤), (⊥), (¬), (∧), (∨), (∃), (Prfc), (⇒c), (∧c), (∨c),
(∀c), (∃c), (o), (;), (;d), (⇒d), (π), (0), (succ), (pred), (positive), (psub), (pair), (pair†),
(fst), (snd), (Scheme), (Els), (↑), ( A), ( A). Note that, strictly speaking, the declaration
(pair†-decl) and the rule (pair-red) are not part of the theory U , but of its extension U† used
to define the conversion on the terms of U . Among these axioms, 12 only have a constant
declaration, 24 have a constant declaration and one rewriting rule, and 2 have a constant
declaration and two rewriting rules. So ΣU contains 38 declarations and RU 28 rules.

This large number of axioms is explained by the fact that λΠ/≡ is a weaker framework
than Predicate logic. The 19 first axioms are needed just to construct notions that are
primitive in Predicate logic: terms, propositions, with their 13 constructive and classical
connectives and quantifiers, and proofs. So the theory U is just 19 axioms on top of the
definition of Predicate logic.

It is also explained by the fact that axioms are more atomic than in Predicate logic,
for instance 4 axioms: (0), (succ), (pred), and (positive) are needed to express “the” axiom
of infinity, 5 (psub), (pair), (pair†), (fst), and (snd) to express predicate subtyping, and 5
(Scheme), (Els), (↑), ( A), and ( A) to express prenex polymorphism. The 5 remaining axioms
express propositions as objects (o), various forms of functionality (;), (;d), and (π), and
dependent implication (⇒d).
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4 Sub-theories

Not all proofs require all these axioms. Many proofs can be expressed in sub-theories built
by bringing together some of the axioms of U , but not all.

Given subsets ΣS of ΣU and RS of RU , we would like to be sure that a proof in U , using
only constants in ΣS , is a proof in ΣS , RS . Such a result is trivial in Predicate logic: for
instance, a proof in ZFC which does not use the axiom of choice is a proof in ZF, but it
is less straightforward in λΠ/≡, because ΣS , RS might not be a theory. So we should not
consider any pair ΣS , RS . For instance, as Set occurs in the type of El, if we want El in ΣS ,
we must take Set as well. In the same way, as positive (succ x) rewrites to ⊤, if we want
(positive) and (succ) in ΣS , we must include ⊤ in ΣS and the rule rewriting positive (succ x)
to ⊤ in RS .

This leads to a definition of a notion of sub-theory and to prove that, if Σ1, R1 is a sub-
theory of a theory Σ0, R0, Γ, t and A are in Λ(Σ1), and Γ ⊢Σ0,R0 t : A, then Γ ⊢Σ1,R1 t : A.

This property implies that, if π is a proof of A in U and both A and π are in Λ(Σ1), then
π is a proof of A in Σ1, R1, but it does not imply that if A is in Λ(Σ1) and A has a proof in
U , then it has a proof in Σ1, R1.

4.1 Fragments

▶ Definition 3 (Fragment). A signature Σ1 is included in a signature Σ0, Σ1 ⊆ Σ0, if each
declaration c : A of Σ1 is a declaration of Σ0.

A system Σ1, R1 is a fragment of a system Σ0, R0, if the following conditions are satisfied:
Σ1 ⊆ Σ0 and R1 ⊆ R0;
for all (c : A) ∈ Σ1, const(A) ⊆ |Σ1|;
for all ℓ ↪→ r ∈ R0, if const(ℓ) ⊆ |Σ1|, then const(r) ⊆ |Σ1| and ℓ ↪→ r ∈ R1.

We write ⊢i for ⊢Σi,Ri , ↪→i for ↪→βRi , and ≡i for ≡βRi .

▶ Lemma 4 (Preservation of reduction). If Σ1, R1 is a fragment of Σ0, R0, t ∈ Λ(Σ1) and
t ↪→0 u, then t ↪→1 u and u ∈ Λ(Σ1).

Proof. By induction on the position where the rule is applied. We only detail the case of a
top reduction, the other cases easily following by induction hypothesis.

So, let ℓ ↪→ r be the rule used to rewrite t in u and θ such that t = θℓ and u = θr. As
t ∈ Λ(Σ1), we have ℓ ∈ Λ(Σ1) and, for all x free in ℓ, θx ∈ Λ(Σ1). Thus, as Σ1, R1 is a
fragment of Σ0, R0, r ∈ Λ(Σ1) and ℓ ↪→ r ∈ R1. Therefore t ↪→1 u and u = θr ∈ Λ(Σ1). ◀

▶ Lemma 5 (Preservation of confluence). Every fragment of a confluent system is confluent.

Proof. Let Σ1, R1 be a fragment of a confluent system Σ0, R0. We prove that ↪→1 is confluent
on Λ(Σ1). Assume that t, u, v ∈ Λ(Σ1), t ↪→∗

1 u and t ↪→∗
1 v. Since |Σ1| ⊆ |Σ0|, we have

t, u, v ∈ Λ(Σ0). Since R1 ⊆ R0, we have t ↪→∗
0 u and t ↪→∗

0 v. By confluence of ↪→0 on Λ(Σ0),
there exists a w in Λ(Σ0) such that u ↪→∗

0 w and v ↪→∗
0 w. Since u, v ∈ Λ(Σ1), by Lemma 4,

w ∈ Λ(Σ1), u ↪→∗
1 w and v ↪→∗

1 w. ◀

▶ Definition 6 (Sub-theory). A system Σ1, R1 is a sub-theory of a theory Σ0, R0, if Σ1, R1
is a fragment of Σ0, R0 and it is a theory. As we already know that R1 is confluent, this
amounts to say that each rule of R1 preserves typing in Σ1, R1.

FSCD 2021



?:12 Some axioms for mathematics

4.2 The fragment theorem
▶ Theorem 7. Let Σ0, R0 be a confluent system and Σ1, R1 be a fragment of Σ0, R0 that
preserves typing. If the judgement Γ ⊢0 t : D is derivable, Γ ∈ Λ(Σ1) and t ∈ Λ(Σ1), then
there exists D′ ∈ Λ(Σ1) such that D ↪→∗

0 D′ and the judgement Γ ⊢1 t : D′ is derivable.

Proof. By induction on the derivation. The important cases are (abs), (app), and (conv).
The other cases are a simple application of the induction hypothesis.

If the last rule of the derivation is
Γ ⊢0 A : TYPE Γ, x : A ⊢0 B : s Γ, x : A ⊢0 t : B

Γ ⊢0 λx : A, t : Πx : A, B
(abs)

as Γ, A, and t are in Λ(Σ1), by induction hypothesis, there exists A′ in Λ(Σ1) such
that TYPE ↪→∗

0 A′ and Γ ⊢1 A : A′ is derivable, and there exists B′ in Λ(Σ1) such that
B ↪→∗

0 B′ and Γ, x : A ⊢1 t : B′ is derivable. As TYPE is a sort, A′ = TYPE. Therefore,
Γ ⊢1 A : TYPE is derivable.
As B is typable and every subterm of a typable term is typable, KIND does not occur in
B. As B ↪→∗

0 B′ and no rule contains KIND, KIND does not occur in B′ as well. Hence,
B′ ̸= KIND. By Lemma 2, as Γ, x : A ⊢1 t : B′ is derivable and B′ ̸= KIND, there exists a
sort s′ such that Γ, x : A ⊢1 B′ : s′ is derivable.
Thus, by the rule (abs), Γ ⊢1 λx : A, t : Πx : A, B′ is derivable. So there is D′ = Πx : A, B′

in Λ(Σ1) such that Πx : A, B ↪→∗
0 D′ and Γ ⊢1 λx : A, t : D′ is derivable.

If the last rule of the derivation is
Γ ⊢0 t : Πx : A, B Γ ⊢0 u : A

Γ ⊢0 t u : (u/x)B
(app)

as Γ, t, and u are in Λ(Σ1), by induction hypothesis, there exist C and A2 in Λ(Σ1), such
that Πx : A, B ↪→∗

0 C, Γ ⊢1 t : C is derivable, A ↪→∗
0 A2, and Γ ⊢1 u : A2 is derivable. As

Πx : A, B ↪→∗
0 C and rewriting rules are of the form (c l1 . . . ln ↪→ r), there exist A1 and

B1 in Λ(Σ1) such that C = Πx : A1, B1, A ↪→∗
0 A1, and B ↪→∗

0 B1. By confluence of ↪→0,
there exists A′ such that A1 ↪→∗

0 A′ and A2 ↪→∗
0 A′. By Lemma 4, as A1 ∈ Λ(Σ1) and

A1 ↪→∗
0 A′, we have A′ ∈ Λ(Σ1) and A1 ↪→∗

1 A′. In a similar way, as A2 ∈ Λ(Σ1) and
A2 ↪→∗

0 A′, we have A2 ↪→∗
1 A′. By Lemma 2, as Γ ⊢1 t : Πx : A1, B1 is derivable and

Πx : A1, B1 ̸= KIND, there exists a sort s such that Γ ⊢1 Πx : A1, B1 : s is derivable. Thus,
by Lemma 2, Γ ⊢1 A1 : TYPE is derivable.
As Γ ⊢1 Πx : A1, B1 : s, Πx : A1, B1 ↪→∗

1 Πx : A′, B1, and Σ1, R1 preserves typing, Γ ⊢1
Πx : A′, B1 : s is derivable. In a similar way, as Γ ⊢1 A1 : TYPE is derivable, and
A1 ↪→∗

1 A′, Γ ⊢1 A′ : TYPE is derivable. Therefore, by the rule (conv), Γ ⊢1 t : Πx : A′, B1
and Γ ⊢1 u : A′ are derivable. Therefore, by the rule (app), Γ ⊢1 t u : (u/x)B1 is derivable.
So there exists D′ = (u/x)B1 in Λ(Σ1), such that (u/x)B ↪→∗

0 D′ and Γ ⊢1 t u : D′ is
derivable.
If the last rule of the derivation is

Γ ⊢0 t : A Γ ⊢0 B : s

Γ ⊢0 t : B
(conv) A ≡βR0 B

as Γ and t are in Λ(Σ1), by induction hypothesis, there exists A′ in Λ(Σ1) such that
A ↪→∗

0 A′ and Γ ⊢1 t : A′ is derivable. By confluence of ↪→0, there exists C such that
A′ ↪→∗

0 C and B ↪→∗
0 C. As A′ ∈ Λ(Σ1) and A′ ↪→∗

0 C we have, by Lemma 4, C ∈ Λ(Σ1)
and A′ ↪→∗

1 C.
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As B is typable and every subterm of a typable term is typable, KIND does not occur in B.
As B ↪→∗

0 C and no rule contains KIND, KIND does not occur in C as well. Thus C ̸= KIND.
As A′ ↪→∗

0 C, A′ ̸= KIND. By Lemma 2, as Γ ⊢1 t : A′ and A′ ≠ KIND, there exists a sort
s′ such that Γ ⊢1 A′ : s′ is derivable. Thus, as A′ ↪→∗

1 C, and Σ1, R1 preserves typing,
Γ ⊢1 C : s′ is derivable. a As Γ ⊢1 t : A′ and Γ ⊢1 C : s′ are derivable and A′ ↪→1 C, by
the rule (conv), Γ ⊢1 t : C is derivable. Thus there exists D′ = C in Λ(Σ1) such that
Γ ⊢1 t : D′ is derivable and B ↪→∗

0 D′.
◀

▶ Corollary 8. Let Σ0, R0 be a confluent system, Σ1, R1 be a fragment of Σ0, R0 that
preserves typing. If Γ ⊢0 t : D, Γ ∈ Λ(Σ1), t ∈ Λ(Σ1), and D ∈ Λ(Σ1), then Γ ⊢1 t : D.

In particular, if Σ0, R0 is a theory, Σ1, R1 be a sub-theory of Σ0, R0, Γ ⊢0 t : D,
Γ ∈ Λ(Σ1), t ∈ Λ(Σ1), and D ∈ Λ(Σ1), then Γ ⊢1 t : D.

Proof. There is a D′ ∈ Λ(Σ1) such that D ↪→∗
0 D′ and Γ ⊢1 t : D′. As D ∈ Λ(Σ1) and

D ↪→∗
0 D′. By Lemma 4 we have D ↪→∗

1 D′, and we conclude with the rule (conv). ◀

▶ Theorem 9 (Sub-theories of U). Every fragment Σ1, R1 of U (including U itself) is a
theory, that is, is confluent and preserves typing.

Proof. The relation ↪→βRU is confluent on Λ(ΣU ) since it is an orthogonal combinatory
reduction system [31]. Hence, after the fragment theorem, it is sufficient to prove that every
rule of RU preserves typing in any fragment Σ1, R1 containing the symbols of the rule.

To this end, we will use the criterion described in [8, Theorem 19] which consists in
computing the equations that must be satisfied for a rule left-hand side to be typable, which
are system-independent, and then check that the right-hand side has the same type modulo
these equations in the desired system: for all rules l ↪→ r ∈ Λ(Σ1), sets of equations E and
terms T , if the inferred type of l is T , the typability constraints of l are E , and r has type
type T in the system Λ(Σ1) whose conversion relation ≡βRE has been enriched with E , then
l ↪→ r preserves typing in Λ(Σ1).

This criterion can easily be checked for all the rules but (pred-red2) and (fst-red) because,
except in those two cases, the left-hand side and the right-hand side have the same type.

In (pred-red2), pred (succ x) ↪→ x, the left-hand side has type El ι if the equation
type(x) = El ι is satisfied. Modulo this equation, the right-hand side has type El ι in any
fragment containing the symbols of the rule.

In (fst-red), fst t p (pair† t′ p′ m) ↪→ m, the left-hand side has type El t if type(t) = Set,
type(p) = El t → Prop, El (psub t′ p′) = El (psub t p), type(t′) = Set, type(p′) = El t′ →
Prop, and type(m) = El t′. But, in U , there is no rule of the form El (psub t p) ↪→ r. Hence,
by confluence, the equation El (psub t′ p′) = El (psub t p) is equivalent to the equations t′ = t

and p′ = p. Therefore, the right-hand side is of type El t in every fragment of U containing
the symbols of the rule. ◀

5 Examples of sub-theories of the theory U

We finally identify 13 sub-theories of the theory U , that correspond to known theories. For
each of these sub-theories ΣS , RS , according to the Corollary 8, if Γ, t, and A are in Λ(ΣS),
and Γ ⊢ΣU ,RU t : A, then Γ ⊢RS ,ΣS t : A.
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Figure 2 The wind rose. In black: Minimal, Constructive, and Ecumenical predicate logic.
In orange: Minimal, Constructive, and Ecumenical simple type theory. In green: Simple type
theory with prenex polymorphism. In blue: Simple type theory with predicate subtyping. In cyan:
Simple type theory with predicate subtyping and prenex polymorphism. In pink: the Calculus of
constructions with a constant ι, without and with prenex polymorphism.

Minimal predicate logic. The 7 axioms (Set), (El), (ι), (Prop), (Prf), (⇒), and (∀) define
Minimal predicate logic. This theory can be proven equivalent to more common formulations
of Minimal predicate logic. As Minimal predicate logic is itself a logical framework, it must
be complemented with more axioms, such as the axioms of geometry, arithmetic, etc.

Constructive predicate logic. The 13 axioms (Set), (El), (ι), (Prop), (Prf), (⇒), (∀),
(⊤), (⊥), (¬), (∧), (∨), and (∃) define Constructive predicate logic. This theory can be
proven equivalent to more common formulations of Constructive predicate logic [15, 3].

Ecumenical predicate logic. The 19 axioms (Set), (El), (ι), (Prop), (Prf), (⇒), (∀), (⊤),
(⊥), (¬), (∧), (∨), (∃), (Prfc), (⇒c), (∧c), (∨c), (∀c), and (∃c) define Ecumenical predicate
logic. This theory can be proven equivalent to more common formulations of Ecumenical
predicate logic [26]. Note that classical predicate logic is not a sub-theory of the theory U ,
because the classical connectives and quantifiers depend on the constructive ones. Yet, it is
known that if a proposition contains only classical connectives and quantifiers, it is provable
in Ecumenical predicate logic if and only if it is provable in classical predicate logic.

Minimal simple type theory. The 9 axioms (Set), (ι), (El), (Prop), (Prf), (⇒), (∀), (o),
and (;) define Minimal simple type theory. And this theory can be proven equivalent to more
common formulations of Minimal simple type theory [2, 3]. We could save the declaration
(Prop-decl) and the rule (o-red) by replacing everywhere Prop with El o[3]. However, by
removing (Prop-decl) and (o-red), this theory does not construct Simple type theory as an
extension of Minimal predicate logic.

Constructive simple type theory. The 15 axioms (Set), (El), (ι), (Prop), (Prf), (⇒),
(∀), (⊤), (⊥), (¬), (∧), (∨), (∃), (o) and (;) define Constructive simple type theory.
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Ecumenical simple type theory. The 21 axioms (Set), (El), (ι), (Prop), (Prf), (⇒),
(∀), (⊤), (⊥), (¬), (∧), (∨), (∃), (Prfc), (⇒c), (∧c), (∨c), (∀c), (∃c), (o) and (;) define
Ecumenical simple type theory. And this theory can be proven equivalent to more common
formulations of Ecumenical simple type theory [26].

Simple type theory with predicate subtyping. Adding to the 9 axioms of Minimal
simple type theory the 5 axioms of predicate subtyping yields Minimal simple type theory
with predicate subtyping, formed with the 14 axioms (Set), (ι), (El), (Prop), (Prf), (⇒), (∀),
(o), (;), (psub), (pair), (pair†), (fst), and (snd). This theory can be proven equivalent to
more common formulations of Minimal simple type theory with predicate subtyping [23, 9].
Such formulations like PVS [33] often use predicate subtyping implicitly to provide a lighter
syntax without (pair), (pair†), (fst) nor (snd) but at the expense of losing uniqueness of type
and making type-checking undecidable. In these cases, terms generally do not hold the proofs
needed to be of a sub-type, which provides proof irrelevance. Our implementation of proof
irrelevance of Section 3 Page 8 extends the conversion in order to ignore these proofs.

Simple type theory with prenex predicative polymorphism. Adding to Minimal
simple type theory the 5 axioms of prenex predicative polymorphism yields Simple type
theory with prenex predicative polymorphism (STT∀) [40, 41] formed with the 14 axioms
(Set), (El), (ι), (Prop), (Prf), (⇒), (∀), (o), (;), (Scheme), (Els), (↑), ( A), and ( A).

Simple type theory with predicate subtyping and prenex polymorphism. Adding
to the 9 axioms of Simple type theory both the 5 axioms of predicate subtyping and the 5
axioms of prenex polymorphism yields a sub-theory with 19 axioms which is a subsystem of
PVS [33] handling both predicate subtyping and prenex polymorphism.

The Calculus of constructions. The 9 axioms (Set), (El), (Prop), (Prf), (⇒d), (∀),
(o), (;d), and (π) define the Calculus of constructions. This is the usual expression of the
Calculus of constructions in λΠ/≡ [13, 3] except that we write Prop for U∗, Prf for ε∗, Set
for U2, El for ε2, o for ∗̇, ⇒d for Π̇⟨∗,∗,∗⟩, ∀ for Π̇⟨2,∗,∗⟩, π for Π̇⟨∗,2,2⟩, and ;d for Π̇⟨2,2,2⟩.
As ⇒d is Π̇⟨∗,∗,∗⟩, ∀ is Π̇⟨2,∗,∗⟩, π is Π̇⟨∗,2,2⟩, and ;d is Π̇⟨2,2,2⟩, using the terminology of
Barendregt’s λ-cube [4], the axiom (∀) expresses polymorphism, the axiom (π) dependent
types, and the axiom (;d) type constructors. Note that these constants have similar types.

So if Γ is a context and A is a term A in the Calculus of constructions then A is inhabited
in Γ in the Calculus of constructions if and only if the translation of A in λΠ/≡ is inhabited
in the translation of Γ in λΠ/≡ [13, 3]. In the translation of Γ in λΠ/≡, variables have
a λΠ/ ≡ type of the form Prf u or El u, and none of them can have the type Set. But,
in λΠ/ ≡, nothing prevents from declaring a variable of type Set. So, the formulation of
the Calculus of constructions in λΠ/ ≡ is in fact a conservative extension of the original
formulation of the Calculus of constructions, where the judgement x : Set ⊢ x : Set can be
derived. Allowing the declaration of variables of type Set in the Calculus of constructions
usually requires to add a sort △ and an axiom 2 : △ [22]. This is not needed here.

The Calculus of constructions with a type ι. Adding the axiom (ι) to the Calculus of
constructions yields a sub-theory with the 10 axioms (Set), (El), (ι), (Prop), (Prf), (⇒d), (∀),
(o), (;d), and (π). It corresponds to the Calculus of constructions with an extra constant ι

of type 2. Adding a constant of type Set in λΠ/≡, like adding variables of type Set does
not require to introduce an extra sort △.
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Some developments in the Calculus of constructions choose to declare the types of
mathematical objects such as ι, nat, etc. in ∗, that would correspond to ι : Prop, fully
identifying types and propositions. We did not make this choice in the theory U , because,
then, the type ι of the constant 0 has type ∗ and the type ι → ∗ of the constant positive has
type 2, while, in Simple type theory, both ι and ι → o are simple types. So the expression
of the simple type ι → o requires type constructors and not dependent types. Dependent
types, the constant π, are thus marginalized to type functions mapping proofs to terms.

In the Calculus of constructions with a constant ι of type 2, there are no dependent types
and no polymorphism at the object level, the latter leading to an inconsistent system [30, 11].
There are no object-level dependent types in the theory U , that is the type El ι → Set of the
symbol array is not equivalent to a term of the form ε△ A, but such dependent types could
be added. Polymorphism is discussed below.

The Minimal sub-theory. Adding the axioms (⇒) and (;) yields a sub-theory with
the 12 axioms (Set), (El), (ι), (Prop), (Prf), (⇒), (∀), (o), (;), (;d), (⇒d), and (π) called
the “Minimal sub-theory” of the theory U . It contains both the 10 axioms of the Calculus of
constructions and the 9 axioms of Minimal simple type theory. It is a formulation of the
Calculus of constructions where dependent and non dependent arrows are distinguished. A
proof expressed in the Calculus of constructions can be expressed in this theory. In a proof,
every symbol ;d or ⇒d that uses a dummy dependency can be replaced with a symbol ;
or ⇒. Every proof that does not use ;d, ⇒d and π, can be expressed in Minimal simple
type theory.

The Calculus of constructions with prenex predicative polymorphism. Adding
the 5 axioms of prenex predicative polymorphism to the 10 axioms of the Calculus of
constructions with a constant ι yields a sub-theory formed with the 15 axioms (Set), (El),
(ι), (Prop), (Prf), (⇒d), (∀), (o), (;d), (π), (Scheme), (Els), (↑), ( A), and ( A) defining the
Calculus of constructions with prenex predicative polymorphism. It is a cumulative type
system [5], containing four sorts ∗, 2, △ and ⋄, with ∗ : 2, 2 : △, and 2 ⪯ ⋄, and besides
the rules ⟨∗, ∗, ∗⟩, ⟨∗,2,2⟩, ⟨2, ∗, ∗⟩, ⟨2,2,2⟩, a rule ⟨△, ⋄, ⋄⟩ to quantify over a variable of
type 2 in a scheme and a rule ⟨△, ∗, ∗⟩ to quantify over 2 in a proposition [41].

6 Conclusion

The theory U is thus a candidate for a universal theory where proofs developed in various
proof systems: HOL Light, Isabelle/HOL, HOL 4, Coq, Matita, Lean, PVS, etc. can be
expressed. This theory can be complemented with other axioms to handle inductive types,
co-inductive types, universes, etc. [2, 41, 21].

Each proof expressed in the theory U can use a sub-theory of the theory U , as if the
other axioms did not exist: the classical connectives do not impact the constructive ones,
propositions as objects and functionality do not impact predicate logic, dependent types and
predicate subtyping do not impact simple types, etc.

The proofs in the theory U can be classified according to the axioms they use, inde-
pendently of the system they have been developed in. Finally, some proofs using classical
connectives and quantifiers, propositions as objects, functionality, dependent types, or pre-
dicate subtyping may be translated into smaller fragments and used in systems different
from the ones they have been developed in, making the theory U a tool to improve the
interoperability between proof systems.
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