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Abstract6

The encoding of proof systems and type theories in logical frameworks is key to allow the translation7

of proofs from one system to the other. The λΠ-calculus modulo rewriting is a powerful logical8

framework in which various systems have already been encoded, including type systems with an9

infinite hierarchy of type universes equipped with a unary successor operator and a binary max10

operator: Matita, Coq, Agda and Lean. However, to decide the word problem in this max-successor11

algebra, all the encodings proposed so far use rewriting with matching modulo associativity and12

commutativity (AC), which is of high complexity and difficult to integrate in usual algorithms for13

β-reduction and type-checking. In this paper, we show that we do not need matching modulo AC14

by enforcing terms to be in some special canonical form wrt associativity and commutativity, and15

by using rewriting rules taking advantage of this canonical form. This work has been implemented16

in the proof assistant Lambdapi.17
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1 Introduction24

The complete formalization of important mathematical theorems or software is possible but25

still very costly in terms of time and expertise (seL4, compcert, odd-order theorem, etc.).26

Moreover, all these certifications are specific to a given prover, and rely on its implementation27

and maintenance. And it is currently very difficult to automatically translate developments28

done in one system to another system, especially if those systems are based on different, and29

possibly incompatible, foundations. Hence, there is a lot of work duplication, and it gets30

more and more difficult for new proof systems to emerge as the development of standard31

libraries is time-consuming and not very rewarding.32

Logical frameworks. A way to improve this situation is to encode the axioms and rules33

of proof systems into a common language, called a logical framework, so that a feature (e.g.34

polymorphism) that is common to two different systems is encoded by the same construction35

[10]. Using a logical framework for n systems allows one to reduce the number of translators36

necessary to translate each system to all the others from O(n2) to O(2n).37

The λΠ-calculus modulo rewriting, λΠ/R, is a good candidate for such a logical framework38

[10]. In [14] already, Cousineau and Dowek proved that any functional pure type system (PTS)39

[7] can be encoded in λΠ/R. Then, several other systems have been encoded: higher-order40

logic and the OpenTheory format used by HOL-Light and HOL4, the calculus of inductive41

constructions and the proof systems of Matita [5], Coq [17] and Agda [20].42

λΠ/R extends the logical framework LF [22] by allowing the definition of function symbols43

and types by a set R of rewriting rules [34]. LF itself extends Church’s simply-typed λ-44
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19:2 Encoding type universes without using matching modulo AC

calculus with dependent types, that is, object-indexed type families. Given a type A, written45

A : Type, the product of an A-indexed family of types (B(x))x∈A is written Πx : A,B(x), and46

simply A→ B if B(x) does not depend on x. In LF, types equivalent modulo β-conversion47

are identified while, in λΠ/R, types equivalent modulo βR-conversion are identified.48

For the type conversion and type-checking of λΠ/R to be decidable, one usually requires49

the rewrite relation generated by β-reduction and rewrite rules, −→β ∪ −→R, to preserve50

typing, be confluent (the order of reductions does not matter) and terminating (there is no51

infinite rewrite sequence), and various criteria have been developed to check those properties52

(see for instance [9, 20, 17]).53

Type universes are a way to reify types, that is, to see types as objects [28], which54

allows one to express polymorphism (quantification over types) and build models of type55

theory in type theory, like in set theory inaccessible cardinals allow one to build models of ZF.56

By iterating this process, we get an ω-indexed sequence of type-theoretic universes U0, U1, . . .57

with each one being an element of the next one, usually written Ui : Ui+1 in type theory.58

However, to keep the system consistent, some care must be taken when defining universe59

constructors. For instance, if A : Ui and, for all x : A, B(x) : Uj , then, with predicative60

universes, we must have (Πx : A,B(x)) : Umax(i,j).61

Following [14], one can easily encode such an infinite hierarchy of type universes in λΠ/R,62

by using the following λΠ/R infinite signature and set of rules:163

for each universe Ui, the symbols Ui : Type and Ti : Ui → Type;64

for each axiom Ui : Ui+1, the symbol ui : Ui+1 and the rewrite rule Ti+1ui −→ Ui;65

for each product from Ui to Uj , the symbol πi,j : Πx : Ui, (Ti x→ Uj)→ Umax(i,j) and the66

rewrite rule Tmax(i,j)(πi,j x y) −→ Πz : Ti x, Tj(y z).67

To get a finite signature, one can represent type universes in Peano arithmetic using the68

following algebra [5]:69

I Definition 1 (Max-successor algebra). The max-successor algebra L is the first-order term70

algebra made of the symbols z of arity 0, s of arity 1 and t of arity 2, written infix. We71

moreover take t of smaller priority than s so that sx t y is the same as (sx) t y. Then, let72

C = V ∪ {z} where V some set of variables disjoint from function symbols.73

The interpretation of a term t wrt a valuation µ : V → N is as expected:74

z is interpretated as 0: zµ = 0,75

s is interpreted as the successor function: (s t)µ = tµ+ 1,76

t is interpreted as the binary max function on N: (u t v)µ = max(uµ, vµ).77

Two terms t, u are equivalent, written t ' u, if, for all valuations µ, tµ = uµ.78

In the following, we will denote by 'A the equational sub-theory of ' generated by the79

equation (t t u) t v = t t (u t v), and by 'AC the equational sub-theory of ' generated by80

the equations u t v = v t u and (t t u) t v = t t (u t v).81

By using this algebra, we can then encode in λΠ/R a type system with an infinite82

hierarchy of type universes using the following finite signature:83

the symbols L : Type, z : L, s : L → L, t : L → L → L and the rules z t y −→ y,84

x t z −→ x, (sx) t (s y) −→ s (x t y);85

the symbols U : L → Type and T : Πi : L, U i→ Type;86

the symbol u : Πi : L, U (s i) and the rewrite rule T _(u i) −→ U i;87

1 In λΠ/R, rules are sometimes presented as part of the signature [13, 30].
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the symbol π : Πi : L,Πj : L,Πx : U i, (T i x → U j) → U (i t j) and the rewrite rule88

T _(π i j x y) −→ Πz : T i x, T j (y z).89

The rules defining t are indeed sufficient to decide whether t ' u when t and u are closed90

terms (i.e. terms with no variables), which is necessary for deciding the type conversion91

relation of λΠ/R.92

Universe variables. This representation with universe variables is also useful to93

represent systems with floating/elastic universes or universe polymorphism like in Coq or94

Agda [33, 32, 2]. However, in this case, the rules defining t do not allow one to decide ' on95

open terms (i.e. terms with variables), even if one adds the associativity and commutativity96

of t in the type conversion because, for instance, x t x = x (t is idempotent), x t sx = sx,97

x t s(sx) = s(sx), . . .98

The relation ' on open terms is decidable though since it is a sub-theory of Presburger99

arithmetic [29]. So, one solution could be to use as logical framework not λΠ/R but an100

extension of LF with decision procedures, like CoqMT [8]. But the translation from such101

a logical framework to HOL-Light, Coq, Agda, etc. would be more difficult or introduce102

undesirable axioms in the target system.103

In [6], Assaf and his coauthors introduced a presentation of the max-successor algebra104

to deal with universe variables. They replaced the successor symbol s by two new symbols:105

1 of arity 0, and + of arity 2. However, they had to use rewriting with matching modulo106

associativity and commutativity (AC) of t, and associativity, commutativity and unit (ACU)107

of + (as z is a neutral element of +), and extend type conversion with those theories too.108

But matching modulo AC or ACU is NP-complete [24, 25].109

Finally, in [19], Genestier introduced another presentation of the max-successor algebra110

that can be decided by using 'AC and matching modulo 'AC only (more details will be111

given in Section 3).112

However, efficient implementations of matching modulo AC or AC-equivalence rely on113

data structures for representing terms that are different from the ones used for implementing114

β-reduction and type-checking in dependent type systems [4, 35, 12, 1]. For instance, in115

[15, 16], an AC symbol f is considered as varyadic (i.e. can take any number of arguments) and116

terms are “flattened” so that f has no argument headed by f . The addition of AC-matching117

and AC-equivalence in a type-checker for λΠ/R can therefore introduce inefficiencies and118

bugs, and greatly increase the size of the code. For instance, the addition of AC-matching119

and AC-equivalence in Dedukti doubled the size of the code2.120

We can therefore wonder whether there is another way to handle universe variables that121

is easier to implement in a type-checker for λΠ/R.122

Outline. In this paper, we give yet another presentation of the max-successor algebra123

together with a new convergent rewrite system for deciding it that does not use matching124

modulo AC. This can be achieved by keeping terms in some AC canonical form, following a125

technique introduced in [11].126

We start by giving a direct proof of decidability of the word problem in the max-successor127

algebra. This will allow us to introduce some notions, like the one of canonical form, that is128

at the basis of our new presentation. For the sake of completeness, we then recall Genestier’s129

rewrite system with matching modulo AC. Then, in Section 4, we give a new presentation130

of the max-successor algebra and a convergent rewrite system for deciding the equivalence131

of two AC-canonical terms of a shape ensured by our translation. Finally, in Section 5, we132

2 See https://github.com/Deducteam/Dedukti/pull/219.
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19:4 Encoding type universes without using matching modulo AC

explain how to modify the code of a λΠ/R type-checker to ensure that every term can always133

be in AC-canonical form. This work has been implemented in the proof assistant Lambdapi134

and the code is freely accessible on https://github.com/Deducteam/lambdapi.135

2 Word problem in the max-successor algebra136

We first give a direct proof of decidability of ' by recalling the notion of canonical form for137

the max-successor algebra introduced by Genestier in [19], by showing that two equivalent138

terms have equal canonical forms, and by providing a recursive functional program for139

computing the canonical form of a term. To this end, we reuse a terminology that is common140

in the study of hetegeneous signatures [18, 21]:141

I Definition 2 (Aliens, combs and caps). Given a binary symbol f , let aliensf : L → L+
142

be the function mapping every term to a non-empty list of terms such that aliensf (t) =143

aliensf (u)aliensf (v) (the list concatenation being written by juxtaposition) if t = fuv, and144

aliensf (t) = t (the singleton list) otherwise.145

Conversely, let combf : L+ → L be the function mapping a non-empty list of terms to a146

term such that combf [t] = t and, for all n ≥ 2, combf [t1, . . . , tn] = ft1combf [t2, . . . , tn].147

Let an f-context be a term whose symbols are f or a distinguished variable �. Given148

an f -context C with n occurrences of � at the respective (disjoint) positions3 p1 < . . . < pn149

(ordered lexicographically4), and n terms t1, . . . , tn, let C[t1, . . . , tn] be the term obtained by150

replacing the occurrence of � at position pi by ti for every i.151

Given a term t, let capf (t) be the (unique) biggest f -context C such that t = C[aliensf (t)].152

Example: alienst((xt y)t z) = [x; y; z], combt[x; y; z] = xt (y t z), capt((xt y)t z) =153

((�t�)t�), Pos((xty)tz) = {ε, 1, 2, 11, 12}, and capt((xty)tz)[t1, t2, t3] = (t1t t2)t t3.154

I Lemma 3. For all terms t, t 'A combt(alienst(t)).155

For all sequences of terms l,m and terms t, u, combt(ltum) 'AC combt(lutm).156

For all terms t1, . . . , tn, s(combt[t1, . . . , tn]) ' combt[s(t1), . . . , s(tn)]157

Proof. By definition, t = capt(t)[alienst(t)]. Let C be the canonical form of capt(t) wrt158

the convergent rewrite system made of the rewrite rule (xt y)t z → xt (y t z). We have159

capt(t) 'A C, capt(t)[alienst(t)] 'A C[alienst(t)] and C[alienst(t)] = combt(alienst(t)).160

Therefore, t 'A combt(alienst(t)).161

By induction on l.162

Case l empty. If m is empty, combt(tu) 'AC combt(ut). Otherwise, combt(tum) =163

t t (u t combt(m)) 'AC u t (t t combt(m)) = combt(utm).164

Case l = al′. combt(ltum) = atcombt(l′tum). By induction hypothesis, combt(l′tum)165

'AC combt(l′utm). Therefore, combt(ltum) 'AC combt(lutm).166

First note that, for all x and y, s(x t y) ' (sx) t (sy). We then proceed by induction167

on n. If n = 1, this is immediate since combt[t] = t. If n ≥ 2, s(combt[t1, . . . , tn]) =168

s(t1 t combt[t2, . . . , tn]) ' (st1) t (s(combt[t2, . . . , tn])). By induction hypothesis,169

s(combt[t2, . . . , tn]) ' combt[s(t2), . . . , s(tn)]. Therefore,170

s(combt[t1, . . . , tn]) ' combt[s(t1), . . . , s(tn)].171

J172

3 The set Pos(t) of the positions in a term t is defined as usual as words on N: Pos(x) = {ε} where ε is
the empty word, and Pos(ft1 . . . tn) = {ε} ∪ {ip | 1 ≤ i ≤ n, p ∈ Pos(ti)}.

4 ip < jq if i < j or else i = j and p < q.

https://github.com/Deducteam/lambdapi
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I Definition 4 (s-terms, S-function and total order on s-terms). A term is an s-term if it173

contains no t symbol.174

For all s-terms t, there is a unique pair (k, x) ∈ N × C such that t = S k x, where175

S : N → L → L is the (meta-level) function such that S 0 t = t and, for all n ≥ 1,176

S n t = S (n− 1) (s t).177

Assuming that C is totally ordered, we define a total order on s-terms by taking Spx ≤ Sqy178

iff x ≤ y or else x = y and p ≤ q.179

I Definition 5 (Canonical forms). A term t ∈ L is in canonical form if:180

t = combt[alienst(t)],181

alienst(t) is a strictly increasing list of s-terms (in the order of Definition 4),182

t is linear (every variable occurs at most once),183

if S k z and S l x are aliens of t then k > l.184

I Lemma 6. Two equivalent canonical forms are equal.185

Every term is equivalent to a canonical form.186

Proof. Let t and u be two equivalent canonical forms. t and u have the same variables187

x1, . . . , xn since, otherwise, they could not have the same interpretation for all valuations.188

Let Sk1x1, . . . , Sknxn be the aliens of t not of the form Skz, and Sl1x1, . . . , Slnxn be the189

aliens of u not of the form Skz.190

Assume that t has an alien of the form Sk0z and u has no alien of the form Skz. Then,191

n > 0 and 0 ≤ kn < k0. But, by taking xiµ = 0 for all i, we get tµ = k0 and uµ = 0,192

which is not possible since t ' u.193

Assume that t has an alien of the form Sk0z and u has an alien of the form Sl0z. By194

taking xiµ = 0 for all i, we get tµ = k0 and uµ = l0. Therefore, k0 = l0.195

Let now M = max({ki|1 ≤ i ≤ n} ∪ {li|1 ≤ i ≤ n}), N = max(M,k) if t and u have196

an alien of the form Skz, and N = M otherwise. For all i ≥ 1, let µi be the valuation197

mapping xi to N and all other variables to 0. Then, tµ = N + ki and uµ = N + li.198

Therefore, ki = li for all i, and t = u.199

We prove that, for all terms t, there is a canonical form t′ such that t ' t′, by induction200

on the size of t.201

Case t is a variable or z. This is immediate since t is in canonical form.202

Case t = su. By induction hypothesis, u ' u′ in canonical form. Let [u1, . . . , un] be203

the aliens of u′. We have t ' su′ = s(combt[u1, . . . , un]) ' combt[s(u1), . . . , s(un)].204

[s(u1), . . . , s(un)] is a strictly increasing list of s-terms. Moreover, if Skz and Slx are205

elements of this list, then k > l. Therefore, combt[s(u1), . . . , s(un)] is a canonical form.206

Case t = u t v. By induction hypothesis, u ' u′ in canonical form, and v ' v′ in207

canonical form. Given a list of s-terms, let sort(l) be the function putting the elements208

of l in increasing order. We have combt(l) 'AC combt(sort(l)). Given an increasing209

list of s-terms, let merge(l) be the function that, starting from l:210

∗ replaces any two (adjacent) terms Spx, Sqx by the single term S(p tN q)x,211

∗ removes any term Spz if there is also some term Sqx with p ≤ q.212

We have combt(l) ' combt(merge(l)) since SpxtSqx ' S(ptNq)x and SpztSqx ' Sqx213

if p ≤ q. Let now l = alienst(u′) and m = alienst(v′). Then, t ' u′ t v′ =214

combt(alienst(u′tv′)) = combt(lm) 'AC combt(sort(lm)) ' combt(merge(sort(lm))),215

which is in canonical form.216

J217

FSCD 2022



19:6 Encoding type universes without using matching modulo AC

It follows that, for checking whether t ' u, it suffices to compute and syntactically218

compare the canonical forms of t and u. This could be easily done in any programming219

language. However, we are interested in implementing this in the logical framework λΠ/R220

and its implementation Lambdapi, which allows one to define functions by using rewriting221

rules with syntactic matching only. However, before showing that this can indeed be done,222

we are first going to see a solution using rewriting with matching modulo AC proposed in223

[19] and implemented in Dedukti thanks to the addition of matching modulo AC in Dedukti224

by Gaspard Férey (see p. 92 in [17]).225

3 Decision procedure using matching modulo AC226

In this section, we recall the rewriting system using matching modulo AC proposed by227

Genestier in [19] for deciding '. The idea is to represent the terms of L as the maximum of228

a natural number and of a finite set of expressions corresponding to the terms S l x with x a229

variable. To do so, Genestier uses a multi-sorted term algebra with three sorts:5230

The sort N with the constructors 0 : N, s : N→ N, + : N× N→ N and ⊕ : N× N→ N written231

infix, with ⊕ of priority smaller than s, to represent arithmetic expressions on natural232

numbers. The sort N is interpreted as N, 0 as 0, s as the successor function, + as the233

addition, and ⊕ as the maximum.234

The sort E with the constructors ∅ : E, a : N × L → E, ∪ : E × E → E written infix, and235

A : N× E→ E, to represent the maximum of a finite set of arithmetic expressions. The sort236

E is interpreted as N∪{−∞}, ∅ as −∞, a and A as the addition with x+(−∞) = −∞, and237

∪ as the maximum. a k t represents the singleton set {k + t}, and the auxiliary function238

A k E (called mapPlus in [19]) adds k to every element of E.239

The sort L with the constructor m : N× E→ L. The sorts L is interpreted as N, and m as240

the maximum.241

A term of L is translated to a term of sort L with the same interpretation as follows:242

|x| = x,243

|z| = m 0 ∅,244

|s t| = m (s 0) (a (s 0) |t|)245

|u t v| = m 0 ((a 0 |u|) ∪ (a 0 |v|))246

0 + q −→ q

s p+ q −→ s (p+ q)

p⊕ 0 −→ p

0⊕ q −→ q

s p⊕ s q −→ s (p⊕ q)

Figure 1 Rewrite rules for addition and maximum on natural numbers.

Then, Genestier introduces a rewrite system, that we will call G, made of the rewrite247

rules of Figure 1 and of the rewrite rules of Figure 2. The second rule for ∪ corresponds to248

the equation (p+ x)⊕ (q + x) = (p⊕ q) + x. It allows one to have at most one occurrence of249

every variable x. The second rule of A corresponds to the equation p+ (q + x) = (p+ q) + x,250

5 In [19], t is denoted by max, E by LSet, a by ⊕, A by mapPlus, and m by Max.

https://blanqui.gitlabpages.inria.fr/
https://github.com/Deducteam/dedukti
https://github.com/Deducteam/dedukti
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X ∪ ∅ −→ X

(a p x) ∪ (a q x) −→ a (p⊕ q)x

A p ∅ −→ ∅
A p (a q x) −→ a (p+ q)x

A p (X ∪ Y ) −→ (A pX) ∪ (A p Y )

m 0 (a 0x) −→ x

m p (a q (m rX)) −→ m (p⊕ (q + r)) (A q X)
m p ((a q (m rX)) ∪ Y ) −→ m (p⊕ (q + r)) ((A q X) ∪ Y )

Figure 2 The system G for computing canonical forms with matching modulo AC includes the
above rules as well as the rules of Figure 1.

while the third rule of A corresponds to the equation p+ (x⊕ y) = (p+ x)⊕ (p+ y). The251

rules of m are the main rules for computing the canonical form. The first rule corresponds to252

the equation 0 ⊕ (0 + x) = x. The second rule corresponds to the equation p ⊕ (q + (r ⊕253

(k1 + x1)⊕ . . .⊕ (kn + xn))) = (p⊕ (q+ r))⊕ (q+ k1 + x1)⊕ . . . (q+ kn + xn). The last rule254

is similar.255

Genestier then proves the following properties:256

The rewrite relation −→G,AC generated by G using matching modulo associativity and257

commutativity of ∪ is not confluent on terms with variables of sort N or E.258

For all terms t in L, any −→G,AC-normal form of |t| is either a variable or of the form259

m p ((a q1 x1) ∪ . . . ∪ (a qn xn)) with x1, . . . , xn distinct variables and, for all k, qk ≤ p.260

Two such normal forms are equal modulo associativity-commutativity of ∪.261

To these results, we can add:262

I Lemma 7. The relation −→G/AC = 'AC−→G'AC generated by G on AC-equivalence263

classes, which contains −→G,AC , terminates.264

Proof. It can be automatically proved by, for instance AProVE [3], using 3 consecutive strictly265

monotone polynomial interpretations on N, and then formally certified in Isabelle/HOL by266

CeTA6. J267

4 Getting rid of matching modulo AC268

In this section, we present our main contribution: a new presentation of L and a new rewrite269

system not using matching modulo AC. It is inspired by the decidability proof of Section 2.270

The main problem for computing the canonical form of a term is to be able to replace an271

expression of the form Spx t (Sry t Sqx) by S(p⊕ q)x t Sry. One way to do it is by using272

the rule (4) of Figure 3 with matching modulo AC. Indeed, we have Spx t (Sry t Sqx) 'AC273

Spx t (Sqx t Sry) −→R S(p ⊕ q)x t Sry. Another way to do it is to make sure that274

the aliens of a term are always ordered so that two aliens Spx and Sqx sharing the same275

variable x are always put side by side. Following [11], this can be achieved by replacing276

constructors by construction functions, that is here, t by some new function symbol t′277

which will rearrange its aliens so as to get such an AC-canonical form. Hence, we get278

Spx t′ (Sry t′ Sqx) 'AC Spx t (Sqx t Sry) −→R S(p⊕ q)x t Sry.279

6 http://cl-informatik.uibk.ac.at/software/ceta/
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19:8 Encoding type universes without using matching modulo AC

Again, we translate terms of L into a multi-sorted term algebra. However, our algebra is280

simpler than Genestier’s algebra. Like [19], we distinguish expressions representing natural281

numbers from the other expressions by using distinct sorts. However, we do not introduce282

a new sort for sets but simply extend L-terms with a new symbol S corresponding to the283

(meta-level) function S of Definition 4.284

We consider the multi-sorted term algebra I with two sorts N and L, and the constructors285

0 : N, s : N → N, + : N × N → N and ⊕ : N × N → N written infix, z : L, S : N × L → L and286

t : L → L → L. Again, we assume that ⊕ is of priority smaller than s. All the sorts are287

interpreted as N, 0 as 0, s as the successor function, + and S as the addition, and ⊕ as the288

maximum.289

I Definition 8 (Guarded terms). An I-term is guarded if every occurrence of an element290

x ∈ C of sort L is in a subterm of the form S p x.291

The idea behind guarded terms is to represent an L-term of the form S k x by the I-term292

S k x, where k is the representation of k in N.293

An L-term is translated into a guarded I-term of sort L with the same interpretation in294

N as follows:295

|x| = S 0x t S 0 z296

|z| = S 0 z297

|s t| = S (s 0) |t|298

|u t v| = |u| t |v|299

For each occurrence of a variable, we add an occurrence of z so that, after normalization300

(see below), we get a term of the form S p1 x1 t . . . t S pn xn t S q z with pi ≤ q.301

I Definition 9 (AC-canonical forms). Let ≤ be any total order on I-terms such that S p x ≤302

S q y iff x < y or else x = y and p ≤ q.7303

An I-term t is in AC-canonical form if t = combt[sort(alienst(t))] and every element304

of alienst(t)− {t} is in AC-canonical form, where sort(l) is the elements of l in increasing305

order wrt ≤.306

Let �AC be the relation mapping every term t to its unique AC-canonical form [t].307

Two terms are AC-equivalent iff their AC-canonical forms are equal.308

Note that AC-canonization is a canonizer in the sense of Shostak [31]. It satisfies the309

properties (CAN-1) to (CAN-5) explicited in [26]: (CAN-1) it is idempotent; (CAN-2) it310

decides 'AC ; (CAN-3) it preserves variables; (CAN-4) every subterm of a canonical term is311

canonical; and (CAN-5) it commutes with order-preserving variable renamings.312

We now introduce the rewrite relation that we will use to decide ':313

I Definition 10 (Rewriting modulo AC-canonization). Let −→AC
R = −→R�AC , where R is314

made of the rewrite rules of Figures 1 and 3.315

An −→AC
R step is a standard −→R step with syntactic matching followed by AC-316

canonization. We will see in Section 5 that AC-canonization is easily implemented by317

replacing constructors by construction functions, so that AC-canonization is implicitly done318

at term construction time [11]. In other words, our decision procedure reduces to standard319

7 Take for instance the lexicographic path ordering generated by any total precedence on function symbols
and variables, and right-to-left comparison of the arguments of S.
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rewriting with syntactic matching but on a restricted set of terms, namely the terms in320

AC-canonical form.321

This notion of rewriting is close to the notion of normal rewriting [27], which consists322

in applying a standard rewrite step after normalization wrt a convergent rewrite system S.323

The difference is that AC-canonization cannot defined by a convergent rewrite system.324

One can easily check that the rules of R preserve guardedness (if t is guarded and325

t −→AC
R u, then u is guarded too) and are semantically correct (−→AC

R ⊆ '). Indeed, the326

first rule corresponds to the associativity of +: p+ (q + x) = (p+ q) + x. The second rule327

corresponds to the distributivity of + over ⊕: p+(x⊕y) = (p+x)⊕ (p+y). On the contrary,328

the last two rules factorize identical monoms that are side by side: (p+x)⊕(q+x) = (p⊕q)+x.329

(1) S p (S q x) −→ S (p+ q)x
(2) S p (x t y) −→ S p x t S p y

(3) S p x t S q x −→ S (p⊕ q)x
(4) S p x t (S q x t y) −→ S (p⊕ q)x t y

Figure 3 Rewrite system on canonical forms.

We now prove that the relation −→AC
R terminates and is confluent on guarded terms330

with no variables of sort N.331

I Lemma 11. The relation −→R/AC = 'AC−→R'AC , which contains −→AC
R , terminates.332

Proof. AProVE8 automatically proves the termination of −→R/AC by a succession of 3333

strictly monotone polynomial interpretations on N, and its result can be formally checked by334

CeTA:335

PSx1x2 = 3 + x1 + 3x1x2 + 3x2336

P+x1x2 = x1 + 2x1x2 + x2337

Ptx1x2 = 3 + x1 + x2338

Psx1 = x1339

P⊕x1x2 = 1 + x1 + x2340

P0 = 1341

validates all the rules as well as the AC axioms of t9 and strictly orients all the rules except342

the last rules of + and ⊕.343

P+x1x2 = x1 + x2344

Ptx1x2 = 3 + 3x1 + 2x1x2 + 3x2345

Psx1 = 3 + x1346

P⊕x1x2 = 1 + x1 + 2x2347

validates all the rules and equations and strictly orients the last rule of ⊕.348

P+x1x2 = 3 + 3x1 + 2x1x2 + 2x2349

Ptx1x2 = 3 + 3x1 + 2x1x2 + 3x2350

Psx1 = 3 + 2x1351

validates all the rules and equations and strictly orients the last rule of +. J352

8 http://aprove.informatik.rwth-aachen.de/
9 A polynomial Pxy validates the AC axioms iff Pxy = axy + b(x+ y) + c with b(b− 1) = ac.
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I Lemma 12. The rewrite relation −→N generated by the rules of Figure 1 terminates and353

is confluent. Moreover, for all closed terms p, q, r of sort N, the following pairs of terms are354

joinable with −→N :355

(p+ q) + r = p+ (q + r)356

p+ q = q + p357

(p⊕ q)⊕ r = p⊕ (q ⊕ r)358

p⊕ q = q ⊕ p359

p+ (q ⊕ r) = (p+ q)⊕ (p+ r)360

Proof. The relation −→N terminates since it is included in the lexicographic path ordering361

with +,⊕ > s. It is confluent since it is weakly orthogonal. So, every term of sort N has a362

unique normal form. Hence, it is sufficient to prove that the above equations are valid in the363

equational theory generated by N .364

A closed term of sort N in normal form wrt −→N cannot contain a subterm of the form365

p+ q or p⊕ q since, otherwise, the smallest such subterm would be reducible by one of the366

rules of N . Hence, every closed term of sort N in normal form wrt −→N is of the form Sk0367

with k ∈ N, where the (meta-level) function S is defined in Definition 4.368

It therefore suffices to prove the above equations by using only induction on natural369

numbers and the rules of N . This can easily be done in Lambdapi for instance. See370

https://github.com/fblanqui/lib. J371

I Lemma 13. −→AC
R is locally confluent on AC-canonical guarded terms with no variables372

of sort N.373

Proof. We show that every critical pair is joinable using −→AC
R and Lemma 12. In the374

following, the terms that are not between square brackets are in AC-canonical form. We also375

write [p⊕ q] to denote either p⊕ q or q ⊕ p.376

(1) S p (S q x) −→ S (p+ q)x is overlapped by:377

(1) By taking x = Srx. We have378

t = Sp(Sq(Srx)) −→AC
1 S(p+ q)(Srx) −→AC

1 S((p+ q) + r)x379

and t −→AC
1 Sp(S(q + r)x) −→AC

1 S(p+ (q + r))x.380

(2) By taking x = x t y. We have381

t = Sp(Sq(x t y)) −→AC
1 S(p+ q)(x t y) −→AC

2 s(p+ q)x t S(p+ q)y382

and t −→AC
2 Sp(Sqx t Sqy) −→AC

2 Sp(Sqx) t Sp(Sqy)383

−→AC
1 [S(p+ q)x t Sp(Sqy)] −→AC

1 S(p+ q)x t S(p+ q)y.384

(2) S p (x t y) −→ S p x t S p y is overlapped by:385

(3) By taking x = Sqx and y = Srx. We have386

t = Sp(Sqx t Srx) −→AC
2 Sp(Sqx) t Sp(Srx) −→AC

1 [S(p+ q)x t Sp(Srx)]387

−→AC
1 [S(p+ q)x t S(p+ r)x] −→AC

3 S[(p+ q)⊕ (p+ r)]388

and t −→AC
3 Sp(S(q ⊕ r)x) −→AC

1 S(p+ (q ⊕ r))x.389

(4) By taking x = Sqx and y = Srx t y. We have390

t = Sp(Sqx t (Srx t y)) −→AC
2 [Sp(Sqx) t Sp(Srx t y)]391

−→AC
1 [S(p+ q)x t Sp(Srx t y)] −→AC

2 [S(p+ q)x t (Sp(Srx) t Spy)]392

−→AC
1 [S(p+ q)x t (S(p+ r)x t Spy)] −→AC

4 [S[(p+ q)⊕ (p+ r)]x t Spy]393

and t −→AC
4 [Sp(S(q ⊕ r)x t y)] −→AC

2 [Sp(S(q ⊕ r)x) t Spy]394

−→AC
1 [S(p+ (q ⊕ r))x t Spy].395

(3) S p x t S q x −→ S (p⊕ q)x is overlapped by:396

(1) By taking x = Srx. We have397

t = Sp(Srx) t Sq(Srx) −→AC
3 S(p⊕ q)(Srx) −→AC

1 S((p⊕ q) + r)x398

https://github.com/fblanqui/lib
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and t −→AC
1 [S(p+ r)x t Sq(Srx)] −→AC

1 [S(p+ r)x t S(q + r)x]399

−→AC
3 S[(p+ r)⊕ (q + r)]x.400

(2) By taking x = x t y. We have401

t = Sp(x t y) t Sq(x t y) −→AC
3 S(p⊕ q)(x t y) −→AC

2 [S(p⊕ q)x t S(p⊕ q)y]402

and t −→AC
2 [(Spx t Spy) t Sq(x t y)] −→AC

2 [(Spx t Spy) t (Sqx t Sqy)]403

−→AC
3 [Spx t (Sqx t S(p⊕ q)y)] −→AC

4 [S(p⊕ q)x t S(p⊕ q)y].404

(4) S p x t (S q x t y) −→ S (p⊕ q)x t y is overlapped by:405

(1) By taking x = Srx. We have406

t = Sp(Srx) t (Sq(Srx) t y) −→AC
4 [S(p⊕ q)(Srx) t y]407

−→AC
1 [S((p⊕ q) + r)x t y]408

and t −→AC
1 [S(p+ r)x t (Sq(Srx) t y)]409

−→AC
1 [S(p+ r)x t (S(q + r)x t y)] −→AC

4 [S[(p+ r)⊕ (q + r)]x t y].410

(2) By taking x = x1 t x2. We have411

t = Sp(x1 t x2) t (Sq(x1 t x2) t y) −→AC
4 [S(p⊕ q)(x1 t x2) t y]412

−→AC
2 [S(p⊕ q)x1 t (S(p⊕ q)x2 t y)] = u413

and t −→AC
2 [(Spx1 t Spx2) t (Sq(x1 t x2) t y)]414

−→AC
2 [(Spx1 t Spx2) t ((Sqx1 t Sqx2) t y)] = v.415

Since t is guarded, wlog we can assume that416

alienst(y) = l1, Sr1x1, .., Srmx1, l2, Ss1x2, .., Ssnx2, l3.417

Then, u can be reduced to combt[l1, Sax1, l2, Sbx2, l3], where418

a = comb⊕[r1, .., p⊕ q, .., rm] and b = comb⊕[s1, .., p⊕ q, .., sn],419

by applying m+ n times −→AC
4 ,420

and v can be reduced to combt[l1, Sa′x1, l2, Sb′x2, l3], where421

a′ = comb⊕[r1, .., p, .., q, .., rm] and b′ = comb⊕[s1, .., p, .., q, .., sn],422

by applying m+ n+ 2 times −→AC
4 .423

(3) By taking y = Srx. We have424

t = Spx t (Sqx t Srx) −→AC
4 [S(p⊕ q)x t Srx] −→AC

3 S((p⊕ q)⊕ r)x425

and t −→AC
3 [Spx t S(q ⊕ r)x] −→AC

3 S(p⊕ (q ⊕ r))x.426

(4) by taking y = Srx t y. We have427

t = Spx t (Sqx t (Srx t y)) −→AC
4 [S(p⊕ q)x t (Srx t y)] = u428

and t −→AC
4 [Spx t (S(q ⊕ r)x t y)] = v.429

Since t is guarded, wlog we can assume that alienst(y) = Sr1x, .., Srmx, l.430

Then, u can be reduced to combt[Sra, l], where431

a = comb⊕[r0, .., p⊕ q, .., rm] and r0 = r, by applying m+ 1 times −→AC
4 ,432

and v can be reduced to combt[Sa′x, l],433

where a′ = comb⊕[r0, .., p, .., q, .., rm], by applying m+ 2 times −→AC
4 .434

J435

Hence, every L-term has, after translation into an I-term, a unique normal form wrt436

−→AC
R . We now prove that this normal form is almost a canonical form, and that it is437

sufficient to decide '.438

I Lemma 14. For all L-terms t and u, we have t ' u iff [|t|] and [|u|] have the same normal439

form wrt −→AC
R , where [|t|] is the AC-canonical form of the translation of t in I.440

Proof. Wlog we can assume that x ≤ z for all x.441

Let T be the set of I-terms containing z that are guarded and have no variable of sort N.442

First note that every T -term that is in normal form wrt −→AC
R is of the form S p1 x1 t443

. . . t S pn xn t S q z with x1 < . . . < xn < z and pi ≤ q for all i. Hence, the −→AC
R -normal444

form of [|t|] is t′ = S p1 x1 t . . .t S pm xm t S q z with x1 < . . . < xm < z and pi ≤ q, and the445

FSCD 2022
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−→AC
R -normal form of [|u|] is u′ = S p′1 x

′
1 t . . . t S p′n x

′
n t S q′ z with x′1 < . . . < x′n < z and446

p′i ≤ q′.447

Note also that t ' |t| ' [|t|] ' t′, and similarly for u and u′.448

Hence, if t′ = u′ then t ' u.449

Conversely, assume that t ' u. Then, t′ ' u′, and t′ and u′ have the same canonical450

form. But a −→AC
R -normal form S p1 x1 t . . . t S pn xn t S q z with x1 < . . . < xn < z and451

pi ≤ q is almost a canonical form: it is a canonical form iff n = 0 or pn < q. Moreover, if it452

is not canonical, then n > 0 and pn = q, and its canonical form is S p1 x1 t . . . t S pn xn. So,453

m = n and, for all i, pi = p′i and xi = x′i. Moreover, since t′ ' u′, we have pn < q iff p′n < q′.454

Therefore, q = q′ and t′ = u′. J455

Remark: the function mapping every L-term t to the unique −→AC
R normal form of456

[|t|] is not a canonizer in the sense of Shostak as it is not an endofunction. On the other457

hand, the function mapping every term of T (guarded terms containing z with no variable of458

sort N) to its −→AC
R normal form is a canonizer in the sense of Shostak as it satisfies the459

following properties [26]: (CAN-1) it is idempotent; (CAN-2) it decides ' on T ; (CAN-3)460

it preserves variables; (CAN-4) every subterm of a canonical term is canonical; and even461

(CAN-5) canonization commutes with order-preserving variable renamings.462

5 Implementation of AC-canonization463

To implement AC-canonization in Lambdapi [23], we use an approach introduced in [11].464

AC-canonization is done at term construction time. More precisely, we use the mechanism of465

private data type of OCaml. A private data type is a semi-abstract data type: it is defined466

as an inductive data type so that users can pattern-match on values of this type but, to build467

values of this type, one needs to use construction functions. With this mechanism, one can468

easily enforce some invariant like, here, to have only terms in AC-canonical form. To do so,469

we only have to replace constructors by construction functions, which is easy and does not470

require big changes in the code, and implement those construction functions10. Moreover,471

to implement them, we can take advantage of the fact that their arguments are themselves472

already in AC-canonical form. Finally, note that, by doing so, we get AC-equivalence in473

the type conversion of Lambdapi for free. On the other hand, we had to slightly adapt the474

normalization algorithm of Lambdapi [23] to take into account the fact that terms are now475

put in AC-canonical form after each rewriting step, which may generate new redexes.476
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