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These notes have been written for a 7-days school organized at the Institute
of Applied Mechanics and Informatics (IAMA) of the Vietnamese Academy of
Sciences and Technology (VAST) at Ho Chi Minh City, Vietnam, from Tues-
day 12 March 2013 to Tuesday 19 March 2013. The mornings were dedicated
to theoretical lectures introducing basic notions in mathematics and logic for
the analysis of computer programs [2]. The afternoons were practical sessions
introducing the OCaml programming language (notes in [3]) and the Coq proof
assistant (these notes).

Coq is a proof assistant, that is, a tool to formalize mathematical objects
and help make proofs about them, including pure functional programs like in
OCaml. Its development started in 1985 [5] and has been improved quite a lot
since then. It is developed at INRIA, France. You can find some short history
of Coq on its web page.

1 Before starting

I suggest to use a computer running the Linux operating system, e.g. the
Ubuntu distribution (but Coq can also be used under Windows). Then, you
have to install the following software:

• emacs: a text editor

• proofgeneral: an Emacs mode for Coq (and other proof assistants)

Alternatively, you can use Coq’s own GUI CoqIDE.

In Ubuntu, the installation is easy: run the “Ubuntu software center”, search
for these programs and click on “Install”.

See the companion paper on OCaml [3] for a list of useful Emacs shortcuts.
There are also shortcuts specific to ProofGeneral: see the Emacs menus for
ProofGeneral and Coq.
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2 Defining inductive types and functions in Coq

All the things that we have previously done in OCaml (see [3]) can be done in
Coq as well, although with a slightly different syntax.

(* Type of finite sequences of natural numbers. *)

Inductive seq :=

| Empty : seq

| Add : nat -> seq -> seq.

(* Examples of lists. *)

Definition s123 := Add 1 (Add 2 (Add 3 Empty)).

Definition s456 := Add 4 (Add 5 (Add 6 Empty)).

(* Length of a list. *)

Fixpoint length l :=

match l with

| Empty => 0

| Add x l’ => 1 + length l’

end.

Eval compute in s123.

(* Concatenation function. *)

Fixpoint concat l1 l2 :=

match l1 with

| Empty => l2

| Add x l1’ => Add x (concat l1’ l2)

end.

Eval compute in (concat s123 s456).

(* Reverse function. *)

Fixpoint add_at_the_end x l :=

match l with

| Empty => Add x Empty

| Add y l’ => Add y (add_at_the_end x l’)

end.

Fixpoint reverse l :=

match l with
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| Empty => Empty

| Add x l’ => add_at_the_end x (reverse l’)

end.

Eval compute in (reverse s123).

(* Comparison function on [nat]. In Coq, [>] is a notation for the

predicate [gt]. [gt] is a relation, i.e. a function into the type

[Prop] of propositions, and not a function into the type [bool] of the

boolean values [true] and [false]. We cannot define a function using

[>], but we can define a boolean function [bool_gt] implementing [>]

as follows instead. *)

Check gt.

(* We need to use the Coq standard library on arithmetic. *)

Require Import Arith.

Definition bool_gt x y :=

match le_gt_dec x y with

| left _ => (* x <= y *) false

| right _ => (* x > y *) true

end.

Check bool_gt.

(* Sorting function. *)

Fixpoint insert x l :=

match l with

| Empty => Add x Empty

| Add y l’ =>

if bool_gt x y

then (* x > y *) Add y (insert x l’)

else (* x <= y *) Add x l

end.

Fixpoint sort l :=

match l with

| Empty => Empty

| Add x l’ => insert x (sort l’)

end.

Eval compute in (sort (concat s456 s123)).
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3 Proving theorems in Coq

To prove some properties of these functions, we are going to use the following
tactics:

Shape of the goal Tactic Effect

forall x, P intro y

Introduction rule for universal
quantification (see [2]): replace
the current goal by P{x 7→ y}.

forall l : seq, P induction l

Application of induction princi-
ple on lists (see [2]: replace the
current goal by two new goals
P{l 7→ Empty} and P{l 7→
Add n l′}.

any goal P simpl
Simplify the current goal by un-
folding function definitions.

any goal P rewrite e

Where e is any term of type
forall x1. . . xn, t = u. Re-
place every subterm of P match-
ing t with substitution σ by σ(u)
(see [2]).

t = t reflexivity Close the goal.

Lemma length_concat : forall l1 l2,

length (concat l1 l2) = length l1 + length l2.

Proof.

induction l1.

(* case Empty *)

intro l2. simpl. reflexivity.

(* case Add *)

intro l2. simpl. rewrite IHl1. reflexivity.

Qed.

Print length_concat.

Lemma length_add_at_the_end : forall x l,

length (add_at_the_end x l) = S (length l).

Proof.

intro x. induction l.

(* case Empty *)

simpl. reflexivity.

(* case Add *)
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simpl. rewrite IHl. reflexivity.

Qed.

Lemma length_reverse : forall l, length (reverse l) = length l.

Proof.

induction l.

(* case Empty *)

simpl. reflexivity.

(* case Add *)

simpl. rewrite length_add_at_the_end. rewrite IHl. reflexivity.

Qed.

Lemma length_insert : forall x l, length (insert x l) = S (length l).

Proof.

intro x. induction l.

(* case Empty *)

simpl. reflexivity.

(* case Add *)

simpl. destruct (bool_gt x n).

simpl. rewrite IHl. reflexivity.

simpl. reflexivity.

Qed.

Lemma length_sort : forall l, length (sort l) = length l.

Proof.

induction l.

simpl. reflexivity.

simpl. rewrite length_insert. rewrite IHl. reflexivity.

Qed.

4 Going further

You can find more material on Coq on its web page http://coq.inria.fr

including:

• The reference manual.

• Tutorials.

• The standard library.

• Links towards other Coq libraries.
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You can also read the following books: [1, 4, 6].

There is also a mailing list coq-club@inria.fr where you can ask questions
and follow discussions about Coq and its applications.
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