
Introduction to the OCaml

programming language

Frédéric Blanqui (INRIA)

13 March 2013

These notes have been written for a 7-days school organized at the Institute
of Applied Mechanics and Informatics (IAMA) of the Vietnamese Academy of
Sciences and Technology (VAST) at Ho Chi Minh City, Vietnam, from Tues-
day 12 March 2013 to Tuesday 19 March 2013. The mornings were dedicated
to theoretical lectures introducing basic notions in mathematics and logic for
the analysis of computer programs [1]. The afternoons were practical sessions
introducing the OCaml programming language (these notes) and the Coq proof
assistant (notes in [2]).

OCaml is a typed programming language with features that make it very
well adapted for symbolic computation:

• It is a functional programming language: functions are first-class objects;
they can be returned and passed as arguments.

• It is strongly typed: pure functional programs cannot have runtime errors
(except when computations exceed the memory).

• One can define inductive data types and define functions by using pattern
matching.

• Functions can be polymorphic (the same code can be used for different types).

• OCaml automatically manages the memory (using a garbage collector) so
that developers do not have to manipulate pointers, an important source of
bugs.

• It has an efficient compiler.

• It also provides other features like modules, objects, . . .

The development of OCaml started in 1996. It is developed at INRIA,
France. You can find some short history of OCaml on its web page.

1

http://who.rocq.inria.fr/Frederic.Blanqui/
http://caml.inria.fr
http://caml.inria.fr
http://www.inria.fr/
http://caml.inria.fr/about/history.en.html


1 Before starting

I suggest to use a computer running the Linux operating system, e.g. the
Ubuntu distribution (but OCaml can also be used under Windows). Then, you
have to install the following software:

• emacs: a text editor

• ocaml: the OCaml compiler

• tuareg-mode: an Emacs mode for editing OCaml programs

• ledit: a line editor for text-based interactive programs

In Ubuntu, the installation is easy: run the “Ubuntu software center”, search
for these programs and click on “Install”.

Finally, add the following line in your ~/.bashrc file:

alias ocaml=’ledit -x -h ~/.ocaml-history ocaml’

2 Emacs

Here is a number of useful basic shortcuts for Emacs:

• To interrupt a shorcut: Ctrl-g

• To open a file in a buffer: Ctrl-x Ctrl-f

• To save a file: Ctrl-x s

• To close a buffer: Ctrl-x k

• To undo a change: Ctrl-underscore

• To copy some text: Ctrl-space, move cursor, Alt-w

• To paste some text: Ctrl-y

• To remove some text: Ctrl-space, move cursor, Ctrl-w

• To search a string: Ctrl-s

• To replace a string by another one: Esc-%

• To indent: Esc-q

• To expand a string already written: Esc-/

• To increase font size: Ctrl-x Ctrl-+

• To decrease font size: Ctrl-x Ctrl–

2

http://en.wikipedia.org/wiki/Linux
http://www.ubuntu.com/download/desktop
http://www.gnu.org/software/emacs/
http://caml.inria.fr
http://tuareg.forge.ocamlcore.org/
http://pauillac.inria.fr/~ddr/ledit/


3 OCaml types and values

The OCaml language has a compiler (in fact two) but it also has an interpreter
that can be run interactively (command ocaml) for trying some simple code.
We will use this at the beginning to discover the basic features of OCaml. Do
Ctrl-c to interrupt ocaml and Ctrl-d to exit.

Some builtin data types and their values:

• int: integers between min_int and max_int (−230 and 230 − 1 on 32-bits
architectures)

• bool: true, false

• char: ’a’, ’b’, ’\n’ (new line), . . .

• string: "hello!", . . .

• float: 1.2, . . .

• unit: singleton type with only one value, (), used for functions changing the
memory, or reading or printing something, but returning no result

The type for functions taking values of type t as argument and returning a
value of type u is t -> u. The type t1 -> t2 -> u denotes t1 -> (t2 -> u)

(type of functions taking two arguments of type t1 and t2 respectively and
returning a value of type u) and not (t1 -> t2) -> u (type of functions taking
an argument of type t1 -> t2 and returning a value of type u). We say that
-> associates to the right.

The type for tuples (x1,. . .,xn) where x1 is of type t1, . . ., xn is of type
tn, is t1 *. . .* tn. For instance, the type for pairs of integers is int * int.

Some builtin functions:

• polymorphic comparison functions: =, <, <=, >, >= : ’a -> ’a -> bool (the
type variable ’a denotes any type)

• arithmetic operations: +, -, * : int -> int -> int

• boolean operators: && (and), || (or) : bool -> bool -> bool, not : bool -> bool

• print an int on stdout (standard output): print_int : int -> unit

• print a string on stdout: print_string : string -> unit

• conditional: if . . . then . . . else . . . : bool -> ’a -> ’a -> ’a

• sequence: ; : unit -> ’a -> ’a. instruction1 ; instruction2 executes
instruction1, then executes instruction2 and returns its result. i1 ; i2 ;

i3 is the same as i1 ; ( i2 ; i3 ) (; associates to the right).

3



How to define constants and non-recursive functions?

let function name argument1 . . . argumentn = definition ;;

For a recursive function:

let rec function name argument1 . . . argumentn = definition ;;

Note that all names occurring in definition must be already defined, except
function name when it is a recursive definition. Note then that the order of
definitions is important.

Texts starting with (* and ending with *) are comments ignored by the
compiler. They can be added anywhere and can be nested.

Exercise 1 Try some expressions in ocaml and see what are the results. For
instance:

1;;

1+3;;

true+3;; (* Typing error *)

2*1+3;;

2*(1+3);;

(2*1)+3;;

letx : bool = true;; (* Syntax error: [letx] with no space between

[let] and [x] is understood as a name *)

let x : bool = true;;

let x : int = 1;; (* We can redefine [x]. *)

let add_5 (x : int) = x + 5;;

add_5 2;;

(* Types are not necessary here since they can be inferred by

OCaml. So we can in fact write: *)

let x = true;;

let x = 1;;

let add_5 x = x + 5;;

let y = a + 1;; (* [a] is undefined. *)

let y = 1;;

let y = y+1;; (* The [y] occurring in the definition of [y] refers to

the previously defined [y].*)

4



let rec fact n = if n <= 1 then 1 else n * fact (n-1);;

1; 2;;

ignore 1; 2;;

(1,true);;

4 Compiling OCaml programs

Writing and compiling an OCaml program:

1. Declare the types (interface) of exported functions in a file my_prog.mli:

val fact : int -> int;;

2. Compile the interface with:

ocamlc -c my_prog.mli

This creates the file my_prog.cmi.

3. Write the implementation of the declared functions in the file my_prog.ml:

let rec fact n = if n <= 1 then 1 else n * fact (n-1);;

4. Compile the implementation with:

ocamlc -c my_prog.ml

This creates the file my_prog.cmo.

5. Build an executable program with:

ocamlc -o my_prog my_prog.cmo

This creates the executable file my_prog.

6. Execute your program with:

./my_prog

Separating interfaces and implementations are many advantages. For in-
stance:

5



• This allows separate development and compilation. One can write a program
my_prog2.ml using the function fact without having the file my_prog.ml but
only its interface my_prog.mli. Even if my_prog.ml is modified, my_prog2.ml
does not need to be recompiled as long as the interface my_prog.mli is un-
changed.

• This allows to hide some implementation details. A type does not need to be
defined in the interface (we then say that this is an abstract data type). To
define some function, one can use auxiliary functions that do not need to be
exported.

All this can be automated by using a Makefile and the make tool. A
Makefile describes the dependencies between files and the commands to execute
(preceded by a tabulation) to build a file from its dependencies. Here is a
possible Makefile for my_prog (a more generic Makefile could be written using
the ocamldep tool described in the OCaml documentation):

default: my_prog

my_prog: my_prog.cmo

ocamlc -o my_prog my_prog.cmo

my_prog.cmo: my_prog.ml my_prog.cmi

ocamlc -c my_prog.ml

my_prog.cmi: my_prog.mli

ocamlc -c my_prog.mli

Note that if there is no interface, then all functions are exported and every
thing can be done with:

ocamlc -o my_prog my_prog.ml

Compilation in Emacs:

1. do Ctrl-x s to save your file my_prog.ml

2. do Ctrl-c Ctrl-c and write ocamlc -o my_prog my_prog.ml as compilation
command

3. in case of a compilation error, do Ctrl-x backquote to jump to the next error

4. in a terminal, run your program by typing ./my_prog

5 Inductive types and pattern-matching

(* A very nice feature of OCaml is its ability to define inductive

types and use pattern-matching for defining functions. As an

6

http://www.gnu.org/software/make/


example, consider the inductive type [seq] of sequences of

integers. A value of type [seq] is either [Empty] for the empty

sequence, or [Add (x,l)] for adding an int [x] at the beginning of

an already built sequence [l]. *)

type seq = Empty | Add of int * seq;;

(* Examples of sequences. *)

let s123 = Add (1, Add (2, Add (3, Empty)));;

let s456 = Add (4, Add (5, Add (6, Empty)));;

(* Function printing a sequence. Elements are separated by the string

[sep]. We use pattern-matching for defining functions on

sequences. Note that the order of patterns is important. *)

let rec print_seq sep l =

match l with

| Empty -> ()

| Add (x, Empty) -> print_int x

| Add (x, l’) -> (* The order of patterns is important! *)

print_int x; print_string sep; print_seq sep l’;;

let print_seq_nl sep l = print_seq sep l; print_newline();;

(* Function computing the concatenation of two sequences. *)

let rec concat l1 l2 =

match l1 with

| Empty -> l2

| Add (x, l1’) -> Add (x, concat l1’ l2);;

print_seq_nl ", " (concat s123 s456);;

(* Function adding an element at the end of a list. *)

let rec add_at_the_end x l =

match l with

| Empty -> Add (x, Empty)

| Add (y, l’) -> Add (y, add_at_the_end x l’);;

(* Function putting the elements of a list in reverse order. *)

let rec reverse l =

match l with

| Empty -> Empty

7



| Add (x, l’) -> add_at_the_end x (reverse l’);;

print_seq_nl ", " (reverse s123);;

(* Function inserting an element in a sorted list. *)

let rec insert x l =

match l with

| Empty -> Add (x, Empty)

| Add (y, l’) ->

if x > y then Add (y, insert x l’) else Add (x, l);;

(* Function sorting the elements of a liste in increasing order. *)

let rec sort l =

match l with

| Empty -> Empty

| Add (x, l’) -> insert x (sort l’);;

print_seq_nl ", " (sort (concat s456 s123));;

6 Functions as arguments and results

(* In OCaml, functions can take functions as argument and return

functions as result. Example: a more generic sorting function taking

as argument a comparison function [cmp : int -> int -> int] such that:

[cmp x y < 0] if [x] is smaller than [y]

= equal to

> greater than *)

let rec insert cmp x l =

match l with

| Empty -> Add (x, Empty)

| Add (y, l’) ->

if cmp x y > 0 then Add (y, insert cmp x l’) else Add (x, l);;

let rec sort cmp l =

match l with

| Empty -> Empty

| Add (x, l’) -> insert cmp x (sort cmp l’);;

let sort_incr = sort (fun x y -> if x < y then -1 else if x = y then 0 else 1);;

let sort_decr = sort (fun x y -> if x < y then 1 else if x = y then 0 else -1);;

8



print_seq_nl ", " (sort_incr (concat s456 s123));;

print_seq_nl ", " (sort_decr (concat s456 s123));;

7 Polymorphism

(* In fact, all the functions define previously on [int] would work as

well with any other type. This can be done in OCaml by using a

polymorphic definition of [seq] as follows, where [’a] denotes a

type variable. *)

type ’a seq = Empty | Add of ’a * ’a seq;;

(* Examples of lists of integers, strings, pairs and functions. *)

let s123 = Add (1, Add (2, Add (3, Empty)));;

let s456 = Add (4, Add (5, Add (6, Empty)));;

let sabc = Add ("a", Add ("b", Add ("c", Empty)));;

let seq_pairs = Add (("a",1), Add (("b",2), Add (("c",3), Empty)));;

let seq_funs = Add ((fun x -> x+1), Add ((fun x -> x+2), Empty));;

(* Then, we only have to generalize [print_seq] by adding a parameter

[print_elt] for printing elements. *)

let rec print_seq print_elt sep l =

match l with

| Empty -> ()

| Add (x, Empty) -> print_elt x

(* beware: the order of patterns is important! *)

| Add (x, l’) ->

print_elt x; print_string sep; print_seq print_elt sep l’;;

let print_seq_nl print_elt sep l =

print_seq print_elt sep l; print_newline();;

print_seq_nl print_int ", " (concat s123 s456);;

8 Going further

You will find a lot of material on OCaml on its web page http://ocaml.inria.
fr including:

9

http://ocaml.inria.fr
http://ocaml.inria.fr


• The reference manual.

• Tutorials.

• The standard library.

• Links towards many libraries and software developed in OCaml.

Books on OCaml and programming in OCaml: [3, 4, 5]. (More books and
lecture notes are available in French.)

There are also a number of useful mailing lists:

• caml-announce@inria.fr

• ocaml beginners@yahoogroups.com

• caml-news-weekly@lists.idyll.org

• caml-list@inria.fr

• ocaml-jobs@inria.fr

References

[1] F. Blanqui. Elements of mathematics and logic for the analysis of com-
puter programs. Lecture notes available on https://who.rocq.inria.fr/

Frederic.Blanqui/, March 2013.

[2] F. Blanqui. Introduction to the Coq proof assistant. Lecture notes available
on https://who.rocq.inria.fr/Frederic.Blanqui/, March 2013.

[3] E. Chailloux, P. Manoury, and B. Pagano. Développement d’applications
avec Objective Caml. O’Reilly, 2000. English translation ”Development of
applications with Objective Caml” available on http://caml.inria.fr/

pub/docs/oreilly-book/.

[4] G. Cousineau and M. Mauny. The Functional Approach to Programming.
Cambridge University Press, 1998.

[5] Jon D. Harrop. OCaml for Scientists. Flying Frog Consultancy Ltd, 2005.

10

http://yquem.inria.fr/cgi-bin/mailman/listinfo/caml-announce
http://groups.yahoo.com/group/ocaml_beginners/
http://alan.petitepomme.net/cwn/
https://sympa.inria.fr/sympa/info/caml-list
https://sympa.inria.fr/sympa/info/ocaml-jobs
https://who.rocq.inria.fr/Frederic.Blanqui/
https://who.rocq.inria.fr/Frederic.Blanqui/
https://who.rocq.inria.fr/Frederic.Blanqui/
http://caml.inria.fr/pub/docs/oreilly-book/
http://caml.inria.fr/pub/docs/oreilly-book/

	Before starting
	Emacs
	OCaml types and values
	Compiling OCaml programs
	Inductive types and pattern-matching
	Functions as arguments and results
	Polymorphism
	Going further

