
Rapport de DEA - Paris, 18 Septembre 1998

The Calculus
of

Algebraic
and

Inductive Constructions

Frédéric Blanqui

Responsables: Jean-Pierre Jouannaud (LRI) et Maribel Fernández (ENS)
Lieu: Laboratoire de Recherche en Informatique (Université Paris XI - Orsay)

DEA Sémantique, Preuve et Programmation - Paris VII

1 Introduction

This work is part of a long-term effort started by the DEMONS team at the Laboratoire de Recherche
en Informatique (Université Paris-Sud) and the Coq team at INRIA-Rocquencourt.

Each team has developed a different approach to specification languages and adapted tools: rewriting
and CiME for the first, constructive higher-order logic and Coq for the second.

Each approach has important advantages, but also some disadvantages. Hence, the idea has emerged
to put together the efforts of both teams in order to build a system that would enjoy the advantages of
both approaches in a safe and coherent way.

Coq is an implementation of the calculus of inductive constructions. As any proof-assistant, it offers
a set of powerful automated tactics, that the user can extend at will. A first advantage is that the
specifications are written in a declarative style, freeing the user from thinking in operational terms.
Secondly, although the system relies on a small kernel which can easily be proved correct, making the
whole system a safe one: each resulting proof is typed-checked, hence has to be correct. Thirdly, whatever
complex are the proofs, it is always possible to extract from them an executable code that is correct with
respect to the specification.

In return, a first disadvantage is that it is difficult to integrate decision procedures. Secondly, the
authorized data types are too restrictive: on the one hand, the constructors must be free, and on the other
hand, the functions must be defined by higher-order primitive recursion which is not really user-friendly.
Thirdly, the system does not yet offer a module system for the management of theories and proofs.

For the rewriting approach to specification languages, the tools are mainly automatic; this is a first
advantage. A second is that it is possible to execute a specification, allowing the user to perform ex-
periments. Thirdly, it is easy to integrate decision procedures expressed by a convergent set of rewrite
rules.

In return, a first disadvantage is that this approach forces the user to think in operational terms.
Secondly, as the system is easily extensible by decision procedures, the user has to check meta-theoretic
properties to ensure the correctness of a specification. Thirdly, the tools developed for this approach are
often too automatic, hence do not allow useful interventions from the user, necessary by the complexity
of proofs.

A first solution to extend Coq with decision procedures is to encode the results of specialized tools
by Coq-terms that can be checked by the kernel. Another solution is to code the decision procedure by
a tactic. Both approaches require an important implementation work (typically, several months), and
result in proofs whose size may not be manageable.

Another approach is to abandon the idea that every proof must be entirely checked by the kernel,
and to trust specialized tools by delegating them the checking of some sub-proofs, e.g. some equational
sub-proofs.

Our work addresses two questions, namely, the integration of decision procedures defined by sets of
rewrite rules, and the definition of a more powerful notion of inductive type, in which functions can be
defined by sets of rewrite rules (pattern matching definitions). As can be expected, the same technical
novelty serves both purposes. The result is the Calculus of Algebraic and Inductive Constructions,
which merges together, in a coherent way, the calculus of constructions, inductive types, first-order and
higher-order rewriting.

2 The Calculus of Algebraic and Inductive Constructions

The aim of this section is to present the Calculus of Algebraic and Inductive Constructions (CAIC), an
extension of the Calculus of Constructions (a typed λ-calculus with polymorphism, dependent types and
type constructors) [CH88] with strictly positive inductive types, uncurried function symbols and rewrite
rules (either first-order or higher-order).

It is an extension of the Calculus of Algebraic Constructions of Barbanera, Fernández and Geuvers
[BFG94] based on the recent work of Jouannaud and Okada [JO97b] for the strong normalization and
confluence of an algebraic simply typed λ-calculus with positive inductive types (not necessarily strict).

Improvements in comparison to [BFG94] are the following:

1

· Inductive types and constructors are made available.
· Abstractions can occur in the rewriting rules (either in the lefthand side or in the righthand side).
· In higher-order rewrite rules, recursive calls can be compared through a combination of multi-set

and lexicographic orderings instead of just a multi-set ordering.
· An adpated version of the new “General schema” of Jouannaud and Okada [JO97b] catches the

recursor rules of any strictly positive inductive type.
· For the λ-calculus part, we use a much shorter and simpler strong normalization proof inspired

from Geuvers [Geu95].
· For the reducibility of higher-order function symbols, we simplify and improve the proof of Jouan-

naud and Okada [JO97b].

Definition 2.1 (Algebraic types) Given a set S of sorts, the set TS of algebraic types is inductively
defined by the following grammar rule:

s := s | (s→s)

where s ranges over S.→ associates to the right such that s1→(s2→s3) can be written as s1→s2→s3.
An algebraic type s1→ . . .→ sn is first-order if si ∈ S (1 ≤ i ≤ n), otherwise it is higher-order. We
denote by T nS (n ≥ 0) the set of algebraic types of the form s1→ . . .→sn→s.

Definition 2.2 (Extended algebraic types) Given an infinite set Var2 of variables, the set of ex-
tended algebraic types is inductively defined by the following grammar rule:

s := α | s | (s→s)

where s ranges over S and α over Var2. As for algebraic types,→ associates to the right.

Definition 2.3 (Constructors) We assume that each sort s has an associated set C(s) of constructors.
Each constructor C is equipped with an algebraic type τ(C) of the form s1→ . . .→sn→s (n ≥ 0): n is
called its arity and s its output type. We denote by Cn (n ≥ 0) the set of constructors of arity n.

A constructor C is first-order if its type is first-order, otherwise it is higher-order.

Here are some familiar examples of sorts:
· the sort bool of booleans whose constructors are true:bool and false:bool
· the sort nat of natural numbers whose constructors are 0nat:nat and snat:nat→ nat
· the sort listt of lists of elements of an algebraic type t whose constructors are nilt:listt and
const: t→ listt→ listt,
· the sort ord of ordinals whose constructors are 0ord:ord, sord:ord→ ord and limord:(nat→ ord)→
ord
· the sort mon of Montague’ semantical objects whose constructors are 0mon:mon and Cmon:((mon→
bool)→ mon)→ mon.

Definition 2.4 (Sort ordering) We define the following quasi-ordering on sorts: s ≥S t if and only if
t occurs in the type of a constructor belonging to C(s).

Definition 2.5 (Function symbols) Given an algebraic type t = s1→ . . .→sn→s (n ≥ 0), we denote
by Fnt the set of function symbols of arity n, of type τ(f) = t and of output type s. We denote by F the
set of all the function symbols, usually called the user’ signature.

Function symbols with a first-order (resp. higher-order) type are called first-order (resp. higher-order).
We denote by F1 (resp. Fω) the set of first-order (resp. higher-order) function symbols.

Here are some familiar examples of functions:
· the function ift of arity 3 and type bool→ t→ t→ t,
· the function +nat of arity 2 and type nat→ nat→ nat,
· the functions 0int of arity 0 and type int, sint of arity 1 and type int→ int, pint of arity 1 and

type int→ int, and +int of arity 2 and type int→ int→ int,
· the function appendt of arity 2 and type listt→ listt→ listt,
· the function mapt,t′ of arity 2 and type (t→ t′)→ listt→ listt′ .

2

Definition 2.6 (Terms) The set Term of the terms of CAIC is inductively defined by the following
grammar rule:

a := x | s | ? | 2 | λx:a.a | Πx:a.a | (a a) | C(a1, . . . , an) | f(a1, . . . , an)

where s ranges over S, C over Cn (n ≥ 0), f over Fnt (t ∈ T nS , n ≥ 0) and x ranges over an infinite
set Var of variables made of two disjoint infinite sets, Var2 and Var?. The application (a b) associates
to the left such that (a1 a2) a3 can be written a1 a2 a3.

A sequence of terms (a1, . . . , an) or a1 . . . an (n ≥ 0) is denoted by a vector ~a whose length is |~a| = n.
A term C(~a) (resp. f(~a)) is said to be constructed headed (resp. function headed).

We inductively define the set Pos(a) of the positions in a term a as a language on the alphabet
{1, 2, . . .} as follows:

· Pos(x) = Pos(s) = Pos(?) = Pos(2) = {ε}
· Pos(λx:a.b) = Pos(Πx:a.b) = Pos(a b) = {ε} ∪ {1} · Pos(a) ∪ {2} · Pos(b)
· Pos(C(a1, . . . , an)) = Pos(f(a1, . . . , an)) = {ε} ∪ {1} · Pos(a1) ∪ . . . ∪ {n} · Pos(an)

where ε denotes the empty word and · the concatenation. The subterm of a term a at position p ∈ Pos(a)
is denoted by a|m and the term obtained by replacing it by a term b is denoted by a[b]m.

Bound and free variables are defined as usual. Var(a) denotes the set of variables occurring in a, while
FV (a) (resp. BV (a)) denotes that of free (resp. bound) variables.

a{~x 7→ ~b} denotes the simultaneous substitution of the terms bi for the variables xi in the term a

(0 ≤ i ≤ |~x| = |~b|). Substitutions are denoted by θ, θ′, . . ., and are written in postfixed notation.
θ ∪ {x 7→ a} denotes the substitution θ′ such that xθ′ = a and yθ′ = yθ if y 6= x. The domain of a
substitution θ is dom(θ) = {x ∈ Var | xθ 6= x}.

As in the untyped λ-calculus, terms that only differ from each other in their bound variables will
be identified, an operation called α-conversion. By convention, bound and free variables will always be
assumed different.

Finally, we use the traditional abbreviations: λ~x :~a.b where |~x| = |~a| denotes b if ~x is an empty
sequence, and the term λx1:a1.(λx2:a2.(. . . (λxn:an.b) . . .)) otherwise. Π~x:~a.b where |~x| = |~a| denotes b if ~x
is an empty sequence, and the term Πx1:a1.(Πx2:a2.(. . . (Πxn:an.b) . . .)) otherwise. If |~a| = n, b~a denotes
b if ~a is an empty sequence, and the term (. . . ((b a1) a2) . . .) an otherwise. We also write a→ b for the
term Πx:a.b where x 6∈ FV (b). This abbreviation allows us to see extended algebraic types as terms of
our calculus.

Definition 2.7 (β-reduction relation) The βh-rewrite relation (β-head rewrite relation) on terms is
defined as follows:

(λx:a.b) c -βh b{x 7→c}
The β-rewrite relation is its compatible closure:

a -βh a
′ ⇒ a -β a

′

a -β a
′, m ∈ Pos(b) ⇒ b[a]m -

β b[a′]m

A term is in βh-normal form (β-normal form) if it cannot be βh-reduced (β-reduced).
The βh-reduction (β-reduction) relation is the reflexive and transitive closure of the βh-rewrite (β-

rewrite) relation.

Lemma 2.8 (β-normal forms) A term a is in β-normal form if and only if it is of the form
µ1x1:b1 . . . µnxn:bn.c ~d where µi ∈ {λ,Π} (1 ≤ i ≤ n, n ≥ 0), terms in ~b and ~d are in β-normal form, and
c is ?, 2, a sort s, a variable y, a constructor headed term C(~e) or a function headed term f(~e) where
terms in ~e are in β-normal form.

Definition 2.9 (Algebraic terms) The set Alg of the algebraic terms is inductively defined by the
following grammar rule:

a := x? | C(a1, . . . , an) | f(a1, . . . , an)

where x? ranges over Var?, C over Cn (n ≥ 0) and f over Fnt (t ∈ T nS , n ≥ 0).
An algebraic term is first-order if its function symbols and constructors are first-order, otherwise it is

higher-order.

3

Definition 2.10 (Rule terms) The set RT of rule terms is inductively defined by the following gram-
mar rule:

a := x? | λx?:s.a | (a a) | C(a1, . . . , an) | f(a1, . . . , an)

where x? ranges over Var?, s over TS , C over Cn (n ≥ 0) and f over Fnt (t ∈ T nS , n ≥ 0).
A rule term is first-order if it is a first-order algebraic term, otherwise it is higher-order.

Lemma 2.11 (β-normal forms of rule terms) A rule term a is in β-normal form if and only if it is
of the form λ~x:~s.c ~d where terms in ~d are in β-normal form and c is a variable y, a constructor headed
term C(~e) or a function headed term f(~e) where terms in ~e are in β-normal form.

Definition 2.12 (Rewrite rules) 1 A rewrite rule is a pair l - r of rule terms such that l is headed
by a function symbol and FV (r) ⊆ FV (l). A function symbol is defined by a rewrite rule if it is the head
function symbol of the lefthand side of that rule.

A term a rewrites to a term b at position m ∈ Pos(a) with the rule l - r if a|m = lθ and b = a[rθ]m
for some substitution θ. Given a set R of rules, a term rewrites by R if it rewrites by one of the rules of
R. Such a rewrite relation is denoted by -

R. The R-reduction relation is the reflexive and transitive
closure of the R-rewrite relation.

A rewrite rule is first-order if l and r are both first-order, otherwise it is higher-order. We denote by
R1 (resp. Rω) the set of first-order (resp. higher-order) rules.

A first-order rewrite rule l - r is conservative if no (free) variable has more occurrences in r than
in l.

From now on, we will assume that first-order (resp. higher-order) function symbols are defined only
by first-order (resp. higher-order) rewrite rules. Actually, it will always be possible to treat a first-order
function symbol as an higher-order one.

Here are some examples of rewrite rules:
ift(true,u,v) - u
ift(false,u,v) - v

+nat(x,0nat) - x
+nat(x,snat(y)) - snat(+nat(x,y))
+nat(+nat(x,y),z) - +nat(x,+nat(y,z))

appendt(nilt,l) - l
appendt(const(x,l′),l) - const(x,appendt(l′,l))

mapt,t′(f ,nilt) - nilt′
mapt,t′(f ,const(x,l)) - const(f x,mapt,t′(f ,l))

With these examples, one can see that CAIC has more expressive power than a first-order algebraic
language, or the calculus of constructions. Indeed, in a first-order algebraic language, a function like
mapt,t′ cannot be defined at all. Yet, it is a powerful and useful function.

In the calculus of constructions, the addition must be defined by induction and therefore cannot
include the associativity property. This property has to be proved afterward. Another example is given
by the definition of the Ackermann’s function. In CAIC, it can be defined as follows:
· ack(0nat,y) - snat(y)
· ack(snat(x),0nat) - ack(x,snat(0nat))
· ack(snat(x),snat(y)) - ack(x,ack(snat(x),y))

In Coq [BBC+98], an implementation of the calculus of inductive constructions [CPM90] [Wer94], it
must be defined in the following way:

1The definition of admissible rewrite rules is postponed to Definition 2.17 on the following page, once typing rules are
defined.

4

Fixpoint ack[n:nat]:nat->nat :=
Cases n of

O => [m:nat](S m)
| (S n’) => Fix ack2 {ack2/1:nat->nat :=

[m:nat] Cases p of
O => (ack n’ (S O))
| (S m’) => (ack n’ (ack2 m’))

end}
end.

Definition 2.13 (Function ordering) We define the following quasi-ordering on function symbols:
f ≥F g if and only if g occurs in a defining rule of f .

Definition 2.14 (Reduction relation) Given a set R of rewrite rules, the rewrite relation of CAIC is
- = -

β ∪ -
R. The reduction relation of CAIC is its reflexive and transitive closure denoted by

-∗. Its transitive closure is denoted by -+
. Its reflexive, symmetric and transitive closure is denoted

by �-* .
A term a reduces to a term a′ at position m ∈ Pos(a), a m- a′, if a′ = a[b′]m and a|m reduces at its

root to b′. A term is in normal form if it cannot be either β-reduced or R-reduced.
An expansion is the inverse of a reduction: a expanses to b if b reduces to a.

Definition 2.15 (Typing rules) A declaration is a pair x:a made of a variable x and a term a.
An environment is an ordered sequence of declarations. If Γ is an environment x1:a1, . . . , xn:an (n ≥ 0)

then the domain of Γ is dom(Γ) = {x1, . . . , xn}, its free variables are FV (Γ) =
⋃
x:a∈Γ FV (a) and

Γ(xi) = ai (1 ≤ i ≤ n).
A typing judgement is a triple Γ ` a : b made of an environment Γ and two terms a, b. A term a has

type b in an environment Γ if the judgement Γ ` a :b can be deduced by the rules of Figure 1 on the next
page.

A term is well-typed in an environment Γ or is a Γ-term if it has a type in the environment Γ. We
denote by WTT the set of the well-typed terms of CAIC. An environment is valid if ? is typable in it.
An environment is algebraic (resp. extended algebraic) if, for each of its declarations x:c, c is an algebraic
type (resp. an extended algebraic type or ?).

One may be surprised by the conversion rule. In the usual calculus of constructions, its side condition
is b�-* b′. So, a priori, our system is not equivalent to the traditional one but to one with b�-* Γb

′ as
side condition, where �-* Γ is defined below. But, once the Church-Rosser’s (CR) and subject reduction
(SR) properties are established, both systems will appear to be equivalent, i.e. the usual conversion rule
will be deducible from our system. Indeed, suppose that b and b′ are two well-typed terms such that
b�-* b′. Then, by CR, there exists a term c such that b -∗c and b′ -∗c. By SR, c is also well-typed
and therefore b�-* Γb

′.

Definition 2.16 (Γ- and ΓΠ-equivalences) [BFG97] Given an environment Γ, two Γ-terms a and b are
Γ-equivalent, written a�-* Γb

2, if they are equivalent through a chain of reductions/expansions a -∗
ρ1
a1

∗
ρ2
� a2

-∗
ρ3
. . . an

∗
ρn+1
� b (ρi ∈ {β,R}, 1 ≤ i ≤ n+ 1, n ≥ 0) whose intermediate terms a1, . . . , an are

well-typed in Γ (nothing is known about the other terms).
Two well-typed terms a and b are ΓΠ-equivalent (a�-*

Π

Γ
b) if they are Γ-equivalent and their interme-

diate well-typed terms are products.

From now on, instead of the (conv) rule of Figure 1 on the following page, we will use its equivalent
form:

(conv’)
Γ ` a :b Γ ` b′ :p

Γ ` a :b′
(p ∈ {?,2}, b�-* Γb

′)

Definition 2.17 (Admissible rewrite rules) 3 A rewrite rule l - r, where l is headed by a function
2 noted

c
=Rβ in [BFG97]

3in [BFG97], similar conditions are defined that are called “cube-embeddability”

5

Figure 1: Typing rules of CAIC

(ax) ` ? :2

(sort) ` s :? (s ∈ S)

(var)
Γ ` c :p

Γ, x:c ` x :c
(x ∈ Varp \ dom(Γ), p ∈ {?,2})

(weak)
Γ ` a :b Γ ` c :p

Γ, x:c ` a :b
(x ∈ Varp \ dom(Γ), p ∈ {?,2})

(cons)
Γ ` a1 :s1 . . . Γ ` an :sn

Γ ` C(a1, . . . , an) :s
(C ∈ Cn, τ(C) = s1→ . . .→sn→s, n ≥ 0)

(fun)
Γ ` a1 :s1 . . . Γ ` an :sn

Γ ` f(a1, . . . , an) :s
(f ∈ Fnt , t = s1→ . . .→sn→s ∈ TS , n ≥ 0)

(abs)
Γ, x:a ` b :c Γ ` Πx:a.c :q

Γ ` λx:a.b :Πx:a.c
(x 6∈ dom(Γ), q ∈ {?,2})

(app)
Γ ` a :Πx:b.c Γ ` d :b

Γ ` a d :c{x 7→d}

(conv)
Γ ` a :b Γ ` b′ :p

Γ ` a :b′
(p ∈ {?,2}, b -∗βb′ or b′ -∗βb or b -∗Rb

′ or b′ -∗Rb)

(prod)
Γ ` a :p Γ, x:a ` b :q

Γ ` Πx:a.b :q
(x 6∈ dom(Γ), p, q ∈ {?,2})

symbol whose output type is s, is admissible if and only if it satisfies the following conditions:
(Well-typedness) there exists a unique algebraic environment Γl such that Γl ` l :s,
(Algebraicity) for any environment Γ, Γ ` l :s ⇒ Γ|FV (l)

�-*
ΓΓl,

(Type-preservation) for any environment Γ, Γ ` l :s ⇒ Γ ` r :s.

The decidability of these conditions is studied in Section 8 on page 28. In comparison to [BFG97]
where the decidability is proved only for algebraic terms, we prove it for a very large class of rule terms
including abstractions and applied variables4.

The admissibility condition of the set of rewrite rules will be explicitly mentioned each time it is
needed, since most of the meta-theoretical results do not need this additional hypothesis.

As an example, let us prove the admissibility of the following rewrite rule: +nat(u,snat(v)) -

snat(+nat(u,v)). The well-typedness condition is satisfied by taking Γ = u :nat, v :nat. The algebraicity
follows from the fact that each variable is the argument of a function symbol. This implies also the type
preservation condition since the righthand side of the rule is well-typed in Γ.

Now, imagine a rule whose lefthand side contains a subterm like (x y) and whose righthand side
contains only y. Then, the type preservation condition cannot be satisfied for all environments. Indeed,
it suffices to consider an environment where the type of y is not equivalent to any algebraic type. It
does not matter in the lefthand side, but the righthand side cannot be well-typed anymore since function
symbols operate only on arguments whose types are algebraic.

4 see Definition 8.1 on page 29

6

Definition 2.18 (Positive and negative type positions) Given an algebraic type s, its sets of pos-
itive and negative positions are inductively defined as follows:

· Pos+(s) = ε if s ∈ S
· Pos−(s) = ∅ if s ∈ S
· Pos+(s→ t) = 1 · Pos−(s) ∪ 2 · Pos+(t)
· Pos−(s→ t) = 1 · Pos+(s) ∪ 2 · Pos−(t)

Given an algebraic type t, we say that s occurs positively in t if s occurs in t, and each occurrence of s in
t is at a positive position.

If s does not occur positively in t then, either s does not occur in t, or s occurs at a negative position
in t.

Definition 2.19 (Inductive sorts) Let s be a sort whose constructors are C1, . . . , Cn (n ≥ 1) and
suppose that Ci has type si1→ . . .→sini→s (1 ≤ i ≤ n, ni ≥ 0). Then we say that:

· s is a basic inductive sort if each sij is either s or a basic inductive sort strictly smaller than s in
≤S ,
· s is a strictly positive inductive sort if each sij is either a strictly positive inductive sort strictly
smaller than s in ≤S or of the form s′1→ . . .→ s′p→ s where each s′k is built from strictly positive
inductive sorts strictly smaller than s in ≤S ,
· s is a positive inductive sort if s does not occur in negative position in each sij .

For example, the sort nat whose constructors are 0nat:nat and snat:nat→nat is a basic sort. The sort
ord whose constructors are 0ord:ord, sord:ord→ ord and limord:(nat→ ord)→ ord is a strictly positive
sort since ord >S nat.

The sort mon whose constructors are 0mon:mon and Cmon:((mon→bool)→mon)→mon is a positive sort.
Indeed, mon >S bool, Pos+((mon→ bool)→ mon)= {2, 1 · 1} and mon occurs only at these positions.

Definition 2.20 (Strictly positive recursors) Let t be an algebraic type and s a strictly positive
inductive sort generated by the constructors C1, . . . , Cn (n ≥ 1) of respective types si1 → . . .→ sini →
s (1 ≤ i ≤ n, ni ≥ 0). Its associated recursor recst is a function symbol of arity n + 1 and type
s→ t1→ . . .→ tn→ t where ti = si1→ . . .→ sini→ si1{s 7→ t}→ . . .→ sini{s 7→ t}→ t. It is defined via the
following rewrite rules:

recst (Ci(~a),~b) - bi ~a ~d

where dj = λ~x:~v.recst (aj ~x,~b) if sij = s′1→ . . .→s′p→s (p ≥ 0) and dj = aj otherwise.

Definition 2.21 (Positive recursors) Let t be an algebraic type and s a strictly positive inductive
sort generated by the constructors C1, . . . , Cn (n ≥ 1) of respective types si1→ . . .→ sini → s (1 ≤ i ≤
n, ni ≥ 0). Its associated recursor recst is a function symbol of arity n+ 1 and type s→ t1→ . . .→ tn→ t
where ti = si1→ . . .→sini→si1{s 7→ t}→ . . .→sini{s 7→ t}→ t. It is defined via the following rewrite rules:

recst (Ci(~a),~b) - bi ~a ~d

where dj = Rs
t (aj , s

i
j) is inductively defined as follows:

Rs
t (e, u1→ . . .→uk→s′) = λx1: u′1 . . . λxk: u

′
k.

{
recst (e f1 . . . fk,~b) if s′ = s

e f1 . . . fk otherwise
where u′j = uj{s 7→ t} if s occurs positively in u1→ . . .→uk→s′, uj otherwise, and fj = Rs

t (xj , uj).

Via the Curry-Howard isomorphism [How80], a recursor of a sort s corresponds to the structural in-
duction principle associated to the set of elements built from the constructors of s. Recursors for strictly
positive types are found in many proof assistants based on the Curry-Howard isomorphism, e.g. in Coq
[PM93].

Here are a few examples of recursors:
rectbool(true,u,v) - u

7

rectbool(false,u,v) - v (note that rectbool is the same as ift)

rectnat(0nat,u,v) - u
rectnat(snat(n),u,v) - v n rectnat(n,u,v) (this is Gödel’s higher-order primitive recursion)

rectord(0ord,u,v,w) - u
rectord(sord(n),u,v,w) - v n rectord(n,u,v,w)
rectord(limord(f),u,v,w) - w f λn:nat.rectord(f n,u,v,w)

rectmon(0mon,u,v) - u
rectmon(Cmon(f),u,v) - v f λx: t→ bool.rectmon(f λy:mon.x rectmon(y,u,v), u,v)

3 Meta-theory

The aim of this section is to establish some structural properties of CAIC. Most of them are classical
properties of pure type systems (PTS).

Definition 3.1 (Term classes)
· The set of kinds is defined by Kind = {K ∈ Term | ∃Γ, Γ ` K :2}.
· The set of type constructors is defined by Constr = {T ∈ Term | ∃Γ,K ∈ Kind, Γ ` T :K}.
· The set of types is defined by Type = {τ ∈ Term | ∃Γ, Γ ` τ :?}.
· The set of objects is defined by Obj = {u ∈ Term | ∃Γ, τ ∈ Type, Γ ` u :τ}.

Besides, by Γ-kind, Γ-type, . . . we mean a Γ-term belonging to the appropriate class.

Lexicography: In the sequel, we will use the following lexicographical conventions: K,K ′ will de-
note kinds, T, T ′ type constructors, τ, σ types, u, v objects, s, t algebraic types, p, q, ? or 2, f, g function
symbols, C,C ′ constructors and a, b, c, d, e arbitrary terms.

As for the calculus of constructions, CAIC can be seen as a PTS. It is easy to see that the introduction
of rewriting does not affect the structural properties shared by all the PTS, even though rewriting is
defined on a larger class of terms. Hence we recall these properties without necessary providing their
proof, that the interested reader can find in [GN91] or [Bar93].

Theorem 3.2 (PTS structural properties) [GN91][Bar93]

(free variables) If Γ ` a :b and Γ = x1:c1, . . . , xn:cn then all the variables xi are distinct,
FV (a) ∪ FV (b) ⊆ {x1, . . . , xn} and FV (ci) ⊆ {x1, . . . , xi−1} (1 ≤ i ≤ n).

(substitution) If Γ, x:a,∆ ` b :c and Γ ` d :a then Γ,∆{x 7→d} ` b{x 7→d} :c{x 7→d}.

(thinning) If Γ ` a :b and Γ ⊆ Γ′ then Γ′ ` a :b.

(stripping) 5 If Γ ` a :b then

· a = p ⇒ b�-* Γ2, p = ?
· a = s ⇒ b�-* Γ?
· a = x ∈ Varp ⇒ b�-* Γb

′, x:b′ ∈ Γ, Γ ` b′ :p
· a = C(a1, . . . , an), τ(C) = s1→ . . .→sn→s ⇒ b�-* Γs, Γ ` ai :si (1 ≤ i ≤ n)
· a = f(a1, . . . , an), τ(f) = s1→ . . .→sn→s ⇒ b�-* Γs, Γ ` ai :si (1 ≤ i ≤ n)
· a = Πx:c.d ⇒ b�-* Γq, Γ ` c :p, Γ, x:c ` d :q
· a = λx:c.d ⇒ b�-* ΓΠx:c.e, Γ, x:c ` d :e, Γ ` c :p, Γ, x:c ` e :q
· a = c d ⇒ b�-* Γe2{x 7→d}, Γ ` c :Πx:e1.e2, Γ ` d :e1

(well-foundedness) 6 If Γ ` a :b then either b = 2 or Γ ` b :p.

(type uniqueness) 7 If Γ ` a :b and Γ ` a :b′ then b�-* Γb
′.

5called “generation lemma” in [GN91]
6called “correctness” in [BFG97]
7only for singly sorted PTS [Bar93] (called functional PTS in [GN91]) which is the case of the calculus of constructions

8

Lemma 3.3 (Γ-unexpansivity of ? and 2) [BFG97] If a is a Γ-term and a�-* Γp then a = p.

Proof. Suppose that a 6= p. Then, there exists a non empty chain of reductions/expansions from a to p. As
p is irreducible, the chain terminates by a reduction a′ -∗ρ p where a′ is a well-typed intermediate term.

If this is an R-reduction then the last R-rewrite must take place at the root since p is not headed by a function
symbol. Hence, a′ = f(~cθ) and p = eθ where f(~c) - e is the last applied rewrite rule. e 6= p since p is not a rule
term. Thus, e = x ∈ Var? and xθ = p, which is not possible for typing reasons.

If this is a β-reduction then a′ must be of the form (λx:b.c) d with p occurring as a subterm of c or d. p 6= 2

since 2 is not typable. Hence, p = ?. Thanks to successive strippings, we can suppose that c = ? or d = ?. If
c = ? then λx:b.c has type Πx:b.2 which is not typable. If d = ? then b is of type 2 which is not typable.

Hence, there cannot exist a non empty chain from a to p and a = p. 3

From now on, we will use a strengthened version of the stripping lemma where b = p whenever b�-* Γp.

Lemma 3.4 (Kind structure) [BFG97] A term a is a Γ-kind if and only if a is a Γ-term of the form
Π~x:~b.?.

Proof. The condition is sufficient. The converse is proved by induction on the structure of the type derivation

of a (the conversion rule cannot apply on kinds since 2 is not expansible). 3

Lemma 3.5 (Γ-stability of kinds) [BFG97] Given a Γ-kind a and a Γ-term b, if a�-* Γb then b is also
a Γ-kind.

Proof. The property is proved by induction on the length of the chain of reductions/expansions between a

and b. By the kind structure lemma, as a is a kind, it is a well-typed product over ?. If a -∗ρ b (ρ ∈ {β,R})
then b has the same structure as a and as it is well-typed, it must be a kind. If b -∗ρ a then, as in the proof of

the unexpansivity lemma of ? and 2 (Lemma 3.3), b has the same structure as a. Hence b is also a kind. 3

Lemma 3.6 (Classification) Constr ∩Kind = Kind ∩Obj = Obj ∩ Constr = ∅

Proof.
· Constr ∩Kind = ∅:

If Γ ` a : K, Γ ` K : 2 and Γ′ ` a : 2 then, by the kind structure lemma, a = Π~x:~b.? for a non empty
sequence of terms ~b since a cannot be equal to ?. Hence, by stripping on Γ ` a :K, K = p ∈ {?,2}. But,

as Γ ` K :2, K = ?. So, by stripping again, Γ, ~x:~b ` ? :? which is not possible.
· Kind ∩Obj = ∅:

If Γ ` a : τ , Γ ` τ : ? and Γ′ ` a : 2 then, by the kind structure lemma, a = Πx:b.c for some terms b and c
since a cannot be equal to ?. Hence, by stripping, τ = 2 which is not possible.
· Obj ∩ Constr = ∅: [BFG97]

By induction on Γ ` a : τ such that Γ ` τ :?, one can show it is not possible that Γ′ ` a :K and Γ′ ` K :2
for any environment Γ′ and term K, thanks to the stripping lemma.

3

Lemma 3.7 (Typed structure) The term classes have the following typed structure:
· K := ? | Πx:τ.K | Πα:K.K
· T := s | α | Πx:τ.τ | Πα:K.τ | λx:τ.T | λα:K.T | (T u) | (T T)
· u := x | C(u1, . . . , un) | f(u1, . . . , un) | λx:τ.u | λα:K.u | (uu) | (uT)

Proof. All these conditions are necessary. They are sufficient for kinds. We prove they are sufficient for type

constructors and objects by induction on the type derivation. The only non straightforward case is that of the

conversion rule. Suppose that T is a type constructor such that Γ ` T :K′, Γ ` K′ :2, Γ ` T :K and K�-* ΓK
′.

Then, by Γ-stability of kinds, Γ ` K : 2 and we can apply the induction hypothesis. Suppose now that u is an

object such that Γ ` u :τ ′, Γ ` τ ′ :?, Γ ` u :τ and τ�-* Γτ
′. Then, by well-foundedness, τ = 2 or Γ ` τ :p ∈ {?,2}.

The first case is not possible since 2 is not expansible and not typable. If Γ ` τ : 2 then τ is a kind and, by

Γ-stability of kinds, τ ′ must also be a kind. This is not possible hence τ is a type and the induction hypothesis

applies. 3

Lemma 3.8 (Rule terms are objects) Given a rule term a, if Γ ` a :b then Γ ` b :?.

9

Proof. We prove the property by induction on the rule term structure of a. By well-foundedness, b = 2 or
Γ ` b :p ∈ {?,2}. If b = 2 then, by the kind structure lemma, a = ? or a is a product and cannot be a rule term.
Suppose that Γ ` b :2. Then a cannot be a variable of Var?, a function symbol or an object constructor headed
term.

If a = c d then, by stripping, Γ ` c : Πx :e1.e2, Γ ` d : e1 and b�-* Γe2{x 7→ d}. By induction hypothesis,
Γ ` Πx:e1.e2 : ? thus Γ, x:e1 ` e2 : ? and, by substitution, Γ ` e2{x 7→ d} : ?. By Γ-stability of kinds, f{x 7→ d}
should be a kind, which is not possible by the classification lemma.

If a = λx :s.c then, by stripping, Γ, x :s ` c : d and b�-* ΓΠx :s.d. By induction hypothesis, Γ ` d : ? thus
Γ ` Πx:s.d :?. By Γ-stability of kinds, Πx:s.d should be a kind, which is not possible by the classification lemma
again.

Therefore, the only possible solution is Γ ` b :?. 3

4 Subject reduction and Γ-consistence of the extended algebraic types

In this section, we establish two important properties: subject reduction on the one hand, and Γ-
consistence of extended algebraic types on the other hand, i.e. two Γ-equivalent extended algebraic
types are syntactically equal. It is worth noting that these two properties are a consequence of a partial
βh-normalization of the Γ-equivalence relation as explained below.

Definition 4.1 (Subject reduction) The subject reduction property expresses the fact that reduction
preserves typing: if Γ ` a :b and a -∗a′ then Γ ` a′ :b.

If a reduction relation satisfies this property, no type error can occur during the execution of a
program. And from a logical point of view, it ensures that if a is a proof of the proposition b then its
reduct a′ is also a proof of b.

The proof that our calculus enjoys the subject reduction property is non trivial. For the case of a
rewrite step, it is done by induction on the structure of the type derivation of the rewrite term. The only
non straightforward case is that of the application rule when there is a rewrite at the root. The following
intermediate result will be needed:

Πx:a.b�-* ΓΠx:a′.b′ ⇒ a�-* Γa
′ and b�-* Γb

′.

In the calculus of constructions, the corresponding property (with �-* instead of �-* Γ) is obtained
thanks to the Church-Rosser property which has not yet been shown for our calculus. We need to prove it
directly. This explains why we adopted a different conversion rule where β-reductions and R-reductions
are separated.

As Πx:a.b�-*
Π

Γ
Πx:a′.b′ ⇒ a�-* Γa

′ and b�-* Γb
′, the idea is to show that

Πx:a.b�-* ΓΠx:a′.b′ ⇒ Πx:a.b�-*
Π

Γ
Πx:a′.b′.

We know that if Πx : a.b -∗c then c = Πx : a′.b′. By Γ-stability of kinds, we also know that if
c -∗Πx:a.b and Πx:a.b is a kind, then c = Πx:a′.b′. We are left with the case where Πx:a.b is a type,
and there are two sub-cases. If c -∗RΠx:a.b then c = Πx:a′.b′ by the R-head-unexpansivity of types
(proved just below). We are left with the second sub-case, for which c -∗βΠx:a.b. The idea is then to
use a standard derivation (outside-in) for which c -∗βhΠx:a′.b′ -∗βΠx:a.b. To complete the proof we
need several technical lemmas.

Lemma 4.2 (Subject reduction for R-reduction) Assuming that the rewrite rules are admissible
and Γ ` a :b, if a -∗Ra

′ then Γ ` a′ :b, and if Γ -∗
RΓ′ then Γ′ ` a :b.

Proof. We prove it for one rewrite step, by induction on the structure of the derivation of Γ ` a : b. The

only non straightforward case is that of the (fun) rule when the rewrite is at the root. Suppose that the applied

rewrite rule is f(~c) - e. Then there exists a substitution {~x 7→ ~d} such that a = f(~c{~x 7→ ~d}) and a′ = e{~x 7→ ~d}.
It is easy to see that there exists some terms ~τ such that Γ ` di :τi (1 ≤ i ≤ |~d|) and Γ, ~x:~τ ` f(~c) :b. By stripping,

b�-* Γs where s is the output type of f . By conversion, Γ, ~x :~τ ` f(~c) : s. Since rewrite rules are admissible,

Γ, ~x:~τ ` e : s. By conversion again, Γ, ~x: ~D ` e : b. And since the variables in ~x are not free in b nor in Γ, by

substitution, Γ ` e{~x 7→ ~d} :b. 3

10

Lemma 4.3 (R-head-unexpansivity of types and kinds) Assume that a is a well-typed term in an
environment Γ, a -∗Ra

′ and Γ ` a′ : p ∈ {?,2}. Then, no rewrite from a to a′ may occur at the root.
Besides, if a′ is a product, then a is also a product.

Proof. Let b be a type of a in Γ. By the subject reduction lemma for R-reduction, Γ ` a′ : b and, by type

uniqueness, b�-* Γp. Therefore, by the Γ-unexpansivity of ? and 2, b = p and a is a type or a kind. By the

typed structure lemma, there cannot be rewrites at the root since types and kinds cannot be headed by function

symbols. Hence, if a′ is a product, then a must also be a product. 3

Lemma 4.4 (Subject reduction on types for βh-reduction) If Γ ` a :? and a -∗βhb then Γ ` b :?.

Proof. We prove it for a βh-rewrite, that is, if Γ ` (λx:a.b) c : ? then Γ ` b{x 7→ c} : ?. By stripping, we find

that ?�-* Γd
′{x 7→ c}, Γ ` λx:a.b : Πx:a′.d′, Γ ` c : a′, Πx:a′.d′�-* ΓΠx:a.d, Γ, x:a ` b : d and Γ ` a : p ∈ {?,2}. If

d′ = x then c = ? and a = 2 which is not possible since a must be typable. Thus d′ = ? and Πx:a′.d′ is a kind.

By Γ-stability of kinds, Πx:a.d is also a kind. Therefore d = ? and a�-* Γa
′. Then, by conversion, Γ ` c :a and,

by substitution, Γ ` b{x 7→c} :?. 3

Lemma 4.5 (Commutativity between R-reduction and βh-reduction) [BFG97] If a -∗Rb and
a -∗βhc, then there exists a term d such that b -∗βhd and c -∗Rd. Besides, if b is a type and c is
a product, then d is a product type.

Proof. It suffices to prove the property for a βh-rewrite step, that is, if a -∗Rb and a -βh c, then there

exists a term d such that b -βh d and c -∗Rd. If a -βh c, then a = (λx : e1.e2) e3, c = e2{x 7→ e3} and

b = (λx :e′1.e
′
2) e′3 for some terms ~e, ~e′ such that e1

-∗
Re
′
1, e2

-∗
Re
′
2 and e3

-∗
Re
′
3. So, it suffices to take

d = e′2{x 7→e′3} for which b -βh d and c -∗Rd. Hence, if c is a product then d must also be a product. And if

b is a type then, by the subject reduction property of the βh-rewrite relation on types, d is a type. 3

Lemma 4.6 (Commutativity between β-reduction and βh-reduction) [BFG97] If a -∗βb and
a -∗βhc, then there exists a term d such that b -∗βhd and c -∗βd. Besides, if b is a type and c is a
product, then d is a product type.

Proof. It suffices to prove the property for a βh-rewrite step, that is, if a -∗βb and a -βh c, then there
exists a term d such that c -∗βd and b = d or b -βh d. Let us prove it by induction on the length of the
rewrite sequence from a to b. If b = a then it suffices to take d = c. Suppose now that a -β a

′ -∗
βb. If

a -βh a
′ then a′ = c and it suffices to take d = b. Otherwise, as a -βh c, there exists some terms e, f, g such

that a = (λx:e1.e2) e3 and c = e2{x 7→ e3}. Since the β-rewrite from a to a′ is not a βh-rewrite, there exists
some terms e′1, e

′
2, e
′
3 such that a′ = (λx:e′1.e

′
2) e′3, e1

-
β e
′
1, e2

-
β e
′
2 or e3

-
β e
′
3. Hence a′ -βh e

′
2{x 7→e′3}

and, by induction hypothesis, there exists a term d such that e′2{x 7→ e′3} -∗βd and b = d or b -βh d. As
c = e2{x 7→e3} -∗βe′2{x 7→e′3}, that d works.

Besides, if c is a product then d must also be a product. And if b is a type then, by the subject reduction

property of the βh-rewrite relation on types, d is a type. 3

Lemma 4.7 (Postponement on types of R-reduction wrt βh-reduction) [BFG97] If a is a type
and
a -∗Rb

-∗
βhc, then there exists a term d such that a -∗βhd -

∗
Rc. Besides, if c is a product, then d is

a product type.

Proof. It suffices to prove the property for a βh-rewrite step, that is, if a is a type, a -∗Rb and b -βh c,

then there exists a term d such that a -βh d and d -∗Rc. If b -βh c then b = (λx:e′1.e
′
2) e′3 and c = e2{x 7→e3}

for some terms e′1, e
′
2, e
′
3. Furthermore, as a is a type, by the R-head-unexpansivity lemma of types and kinds,

a = (λx : e1.e2) e3 for some terms ~e such that e1
-∗

Re
′
1, e2

-∗
Re
′
2 and e3

-∗
Re
′
3. So, it suffices to take

d = e2{x 7→e3} for which a -βh d and d -∗Rc. Furthermore, if c is a product then, by the R-head-unexpansivity

lemma again, d is also a product. And, since a is a type, by the subject reduction property of the βh-rewrite

relation on types, d is a product type. 3

Lemma 4.8 (Postponement of β-reduction wrt βh-reduction) [BFG97] If a -∗βb -
∗
βhc, then there

exists a term d such that a -∗βhd -
∗
βc with no βh-rewrite from d to c. Besides, if a is a type and c is

a product, then d is a product type.

11

Proof. This results from the standardization theorem of the untyped λ-calculus (see for example [Bar84]).

We can use it also in our calculus by applying it recursively inside the variable type of the abstractions. So, if a

reduces to c then there exists an outside-in β-reduction from a to c. Hence it suffices to take the last βh-reduced

term for d. Besides, if c is a product, then d is also a product since there is no βh-rewrites between d and c. And

if a is a type, then, by the subject reduction property of the βh-rewrite relation on types, d is a product type. 3

Lemma 4.9 (βh-normalization of Γ-equivalence for product types) [BFG97] Assume that c is a
type Γ-equivalent to a product type Πx:a.b through a chain of reductions/expansions whose intermediate
well-typed terms are types. Then, c has a βh-normal form ΓΠ-equivalent to Πx:a.b.

Proof. Suppose that Πx:a.b ∗ρ1
� c1 -∗

ρ2 c2
∗
ρ3
� . . . cn

∗
ρn+1
� c (ρi ∈ {β,R}, 1 ≤ i ≤ n+1, n ≥ 0). As c1 is

a type and Πx:a.b is a product in βh-normal form, by the postponement lemmas, there exists a well-typed product

d1 such that c1 -∗βhd1 and Πx:a.b ∗ρ1
� d1. Then, as c2 is a type and d1 is a product, by the commutativity

lemmas, there exists a well-typed product d2 such that c2 -∗βhd2 and d1
-∗

ρ2 d2. By repeating this process

until c is reached, we get a chain of reductions/expansions Πx:a.b ∗ρ1
� d1

-∗
ρ2 d2 . . . dn

∗
ρn+1
� dn+1 such that

the terms ~d are well-typed products and c -∗βhdn+1. Since dn+1 is a product, it is in βh-normal form. Hence c

has a βh-normal form ΓΠ-equivalent to Πx:a.b. 3

Lemma 4.10 (Product decomposition) [BFG97] If Πx:a.b and Πx:a′.b′ are two Γ-equivalent terms
through a chain of reductions/expansions whose intermediate well-typed terms are types or kinds, then
a�-* Γa

′ and b�-* Γb
′.

Proof. If one of the intermediate well-typed terms is a kind then, by Γ-stability of kinds, all of them are

kinds and, by the kind structure lemma, all of them are products. Otherwise, all of them are types and, by

βh-normalization, there exists another chain in which all intermediate well-typed terms are products. In both

cases, Πx:a.b�-*
Π

Γ Πx:a′.b′. Hence, a�-* Γa
′ and b�-* Γb

′. 3

Lemma 4.11 (Subject reduction for β-reduction) [BFG97] Assuming that Γ ` a : b, if a -∗βa
′

then Γ ` a′ :b and, if Γ -
β Γ′ then Γ′ ` a :b.

Proof. By induction on the structure of the derivation of Γ ` a :b. The only non straightforward case is that
of the application rule when there is a rewrite at the root:

Γ ` λx:a.b :Πx:a′.d′ Γ ` c :a′

Γ ` (λx:a.b) c :d′{x 7→c}

By stripping on Γ ` λx:a.b : Πx:a′.d′, we find that Πx:a′.d′�-* ΓΠx:a.d, Γ, x:a ` b : d and Γ ` a : p ∈ {?,2}. By

definition of the conversion rule, the intermediate well-typed terms from Πx:a.d to Πx:a′.d′ are types or kinds.

By the product decomposition lemma, a�-* Γa
′ and d�-* Γd

′. By conversion, Γ, x:a ` b : d′ and Γ ` c :a. Hence,

by substitution, Γ ` b{x 7→c} :d′{x 7→c}. 3

Theorem 4.12 (Subject reduction) [BFG97] Assuming that the rewrite rules are admissible and Γ `
a :b, if a -∗a′ then Γ ` a′ :b and, if Γ -∗Γ′ then Γ′ ` a :b.

Proof. By Lemmas 4.2 on page 10 and 4.11. 3

Lemma 4.13 (Compatibility of Γ-equivalence with typing) Given two Γ-equivalent well-typed terms
a and a′, if Γ ` a :b then Γ ` a′ :b. Besides, given two Γ-equivalent environment Γ and Γ′, if Γ ` a :b then
Γ′ ` a :b.

Proof. By subject reduction and type uniqueness. 3

Lemma 4.14 (R-unexpansivity of sorts and type variables) Given a well-typed term a and a sort
or type variable s, if a -∗Rs then a = s.

Proof. If a 6= s then a must be of the form f(~b) for some function symbol f and terms ~b. Thus Γ ` a :s′ for

some environment Γ and algebraic type s′. Then, by subject reduction, Γ ` s :s′ which is not possible. 3

12

Lemma 4.15 (βh-normalization of Γ-equivalence for sorts and type variables) Assume that c
is a type Γ-equivalent to a sort or a type variable s through a chain of reductions/expansions whose
intermediate well-typed terms are types. Then, s is the βh-normal form of c.

Proof. We use the same technique as for product types. Suppose that s ∗ρ1
� c1 -∗

ρ2 c2
∗
ρ3
� . . . cn

∗
ρn+1
� c (ρi ∈

{β,R}, 1 ≤ i ≤ n + 1, n ≥ 0). As c1 is a type and s is in βh-normal form, by the postponement lemmas, there

exists a well-typed term d1 such that c1 -∗βhd1 and s ∗ρ1
� d1. By R-unexpansivity of sorts, ρ1 = β and, as

there is no βh-rewrite from s to d1, d1 = s. Then, by the commutativity lemmas, there exists a well-typed term

d2 such that c2 -∗βhd2 and s -∗ρ2 d2. As s is irreducible, d2 = s. By repeating this process until c is reached,

we obtain that c -∗βhs. 3

Lemma 4.16 (Γ-consistence of extended algebraic types) Given two extended algebraic types s
and s′, if they are Γ-equivalent through a chain of reductions/expansions whose intermediate well-typed
terms are types, then s = s′.

Proof. By the product decomposition lemma, the problem is reduced to that of sorts and type variables. By

βh-normalization, two Γ-equivalent sorts or type variables are necessarily equal since they are in βh-normal form.

3

From now on, we will use a strengthened version of the stripping lemma where b = s whenever
b�-* Γs ∈ TS .

5 Strong normalization

In this section, we assume that the reduction relation for which we want to prove the strong normalization
property enjoys the subject reduction property.

Definition 5.1 (Strong normalization) A term is strongly normalizable if any reduction starting from
it terminates.

This property is very important since it implies, together with confluence, the logical soundness of
the system (Section 6 on page 26) and the decidability of type-checking (Section 7 on page 27).

To prove the strong normalization property for well-typed terms, we use the interpretation technique
of Geuvers [Geu95] which is an extension to the calculus of constructions of the well known “reducibility
candidates” of Girard [GLT88] but where types are not interpreted by sets of well-typed terms. This
technique is modular and gives a short and flexible proof of the strong normalization property.

For the rewriting aspects of that proof, we rely on the new “general schema” of Jouannaud and Okada
for higher-order rules [JO97b].

A proof of Γ ` a : b ⇒ a ∈ SN by induction on the structure of a does not go through because
of the application case: if c and d are strongly normalizable terms, the application c d is not strongly
normalizable a priori (a well known example in the untyped λ-calculus is the application ω ω where ω is
the strongly normalizable term λx.xx). So, the idea is to use a stronger induction hypothesis by proving
Γ ` a :b ⇒ a ∈ [[b]]ξ such that [[b]]ξ ⊆ SN and [[]] is “stable by application”.

Such an interpretation [[b]]ξ relies on what is generally called “reducibility candidates”. Introductory
material can be found in the Chapter 3 of [Wer94]. There exists several definitions such as that of Girard
[GLT88], the saturated sets of Tait [Tai67], or that of Parigot [Par93]. A survey is given in [Gal90]. In
addition to what is generally required for an interpretation of types, we need the reducibility candidates
to be stable by reduction. Besides, for a set of reducibility candidates to be admissible, we require that
it contains some subsets of SN which will be used as interpretations of the sorts.

5.1 Interpretation of the types

By “interpretation of the types”, we mean the interpretation of terms that can be the type of some other
term. This includes Type, Kind and 2.

Definition 5.2 (Reducibility candidates) A set C of terms is a reducibility candidate if it satisfies
the following conditions:

13

· C ⊆ SN (reducible elements are strongly normalizable)
· Var ⊆ C (variables are reducible)
· ∀ a ∈ Term, ∀ b, c ∈ SN, a{x 7→ b} ∈ C ⇒ (λx:c.a) b ∈ C (a β-redex is reducible if its reduct is
reducible and the abstraction variable type is strongly normalizable)
· ∀ a ∈ C, ∀ b ∈ Term, a - b ⇒ b ∈ C (stability by reduction)

Lemma 5.3 SN is a reducibility candidate.

Definition 5.4 Given two sets of terms C and D, we define the set of terms C→→D = {a ∈ Term | ∀ b ∈
C, a b ∈ D}.

Definition 5.5 (Algebraic type interpretation) We inductively define the algebraic type interpreta-
tion as follows:
· SN(s) = {a ∈ SN | if a -∗ C(b1, . . . , bn) (n ≥ 1) and τ(C) = s1 → . . . → sn → s then
bi ∈ SN(si) (1 ≤ i ≤ n)},
· SN(s1→s2) = SN(s1)→→SN(s2).

Let us justify this definition. Suppose we have a family (si)i∈I of sorts. Let P = {X ⊆ SN | X
contains all strongly normalizable terms that do not reduce to a constructor headed term}. It is easy
to see that P is a complete lattice for set inclusion. Now, let F : P I → P I , (Xi)i∈I 7→ (X ′i)i∈I where
X ′i = Xi ∪ {a ∈ SN | a -∗C(~b), τ(C) = t1→ . . .→ tn→ si and bk ∈ X(tk) (1 ≤ k ≤ n)}, where X
is inductively defined as follows: X(si) = Xi and X(s→ t) = X(s)→→X(t). F is clearly a monotone
function. Hence, from the Tarski’s theorem [Tar55], it has a least fixed point (X̄i)i∈I .

Lemma 5.6 For any algebraic type t, SN(t) is a reducibility candidate.

Definition 5.7 (Admissible sets of reducibility candidates) A set RC of reducibility candidates
is admissible if it satisfies the following conditions:
· SN ∈ RC
· ∀ s ∈ S, SN(s) ∈ RC
· ∀C,D ∈ RC, C→→D ∈ RC (stability by→→)
· ∀ I 6= ∅, ∀ (Ci)i∈I ∈ RCI ,

⋂
i∈I Ci ∈ RC (stability by non empty intersection)

As an example, let us prove that the saturated sets [Tai67] that are stable by reduction is an admissible
set of reducibility candidates.

Definition 5.8 (Saturated sets) A set S of terms is saturated if:
· S ⊆ SN ,
· for any variable x and strongly normalizable terms ~d, x ~d ∈ S,
· for any variable x and strongly normalizable terms a, b, c, ~d, if a{x 7→b} ~d ∈ S then (λx:c.a) b ~d ∈ S,
· if a ∈ S and a′ is a reduct of a then a′ ∈ S.

We denote by SAT the set of all saturated sets.

Lemma 5.9 (SAT admissibility) SAT is an admissible set of reducibility candidates.

Proof. It is easy to see that saturated sets are reducibility candidates. Let us prove that SAT is admissible.

· It is easy to see that SN and SN(s) (s ∈ S) are saturated sets. Indeed, any maximal rewrite sequence of
(λx:c.a) b contains a βh-rewrite, hence conducts to a reduct of a{x 7→b}.
· If S and T are two saturated sets then S→→ T is also saturated. First, S→→ T ∈ SN since Var ∈ S and
T ⊆ SN . Second, S→→T contains any term of the form x ~d or (λx:c.a) b ~d if a{x 7→ b} ~d is itself in S→→T
since S ∈ SN and T contains already these terms. Third, S→→T is clearly stable by reduction since Var ∈ S
and T is itself stable by reduction.
· Saturated sets are clearly stable by non empty intersection.

3

In the following, RC will refer to any admissible set of reducibility candidates.

Definition 5.10 (Interpretation of the kinds) [Geu95] The interpretation of the kinds is inductively
defined as follows, where F(X,Y) denotes the set theoretic function space from X to Y :

14

· [[?]] = RC
· [[Πα:K.K ′]] = F([[K]], [[K ′]])
· [[Πx:τ.K]] = [[K]]

We denote by RC∗ the set of all the elements of the kind interpretations: RC∗ = {x ∈ [[K]] | K ∈ Kind}.

Lemma 5.11 (Substitution property of kind interpretation) [Geu95] If Γ, x:a ` b :2 and Γ ` c :a
then [[b{x 7→c}]] = [[b]].

Proof. By induction on the structure of the derivation of Γ, x:a ` b :2. 3

Lemma 5.12 (Compatibility of kind interpretation with Γ-equivalence) If a and a′ are two Γ-
equivalent kinds then [[a]] = [[a′]].

Proof. By induction on the kind structure of a. If a = ? then, by the Γ-unexpansivity lemma of ?, a′ = ?

and [[a]] = [[a′]]. Otherwise, a = Πx:b.c and a′ = Πx:b′.c′ for some terms b, c, b′, c′ such that b�-* Γb
′ and c�-* Γc

′.

Since a and a′ are kinds, c and c′ are kinds and, as �-* Γ preserves typing, b is a kind if and only if b′ is a kind.

So, by induction hypothesis, [[c]] = [[c′]] and [[b]] = [[b′]] if b is a kind. Therefore, [[a]] = [[a′]]. 3

Definition 5.13 (Γ-valuations) [Geu95] A valuation is a function from Var2 to RC∗. Given an en-
vironment Γ, a valuation ξ is a Γ-valuation, or is compatible with Γ, if ξ(x) ∈ [[Γ(x)]] for each variable
x ∈ dom(Γ) ∩ Var2.

Definition 5.14 (Interpretation of the types) 8 Given an environment Γ and a Γ-valuation ξ, the
interpretation of the types is inductively defined as follows:

· [[α]]ξ = ξ(α)
· [[T T ′]]ξ = [[T]]ξ([[T ′]]ξ)
· [[T u]]ξ = [[T]]ξ
· [[λα:K.T]]ξ = the function from [[K]] to {[[T]]ξ,α=r | r ∈ [[K]]} which associates [[T]]ξ,α=r to each
r ∈ [[K]]
· [[λx:τ.T]]ξ = [[T]]ξ
· [[Πα:K.a]]ξ = [[K]]ξ→→

⋂
S∈[[K]][[a]]ξ,α=S

· [[Πx:τ.a]]ξ = [[τ]]ξ→→ [[a]]ξ
· [[?]]ξ = [[2]]ξ = SN
· [[s]]ξ = SN(s)

The correctness of that definition is ensured by the following lemma. Indeed, in the T T ′ case, as T
has for type a product operating on kinds, [[T]]ξ must be a function which applies to [[T ′]]ξ.

Lemma 5.15 (Correctness of the type interpretation) [Geu95] Given an environment Γ and a Γ-
valuation ξ,

· if Γ ` a :b and Γ ` b :2 then [[a]]ξ ∈ [[b]],
· if Γ ` a :2 then [[a]]ξ ∈ RC.

Proof. The first statement is proved by induction on the structure of the derivation of Γ ` a :b. The second,

by induction on the structure of the kind a. 3

Lemma 5.16 (Reducibility of constructor headed terms) Given an environment Γ, a Γ-valuation
ξ and a constructor C whose type is s1→ . . .→sn→s (n ≥ 0), a term C(a1, . . . , an) ∈ [[s]]ξ if and only if
ai ∈ [[si]]ξ (1 ≤ i ≤ n).

Proof. By definition of [[s]]ξ. 3

Lemma 5.17 (Substitution property of type interpretation) [Geu95] Given an environment Γ, a
Γ-valuation ξ and a constructor or a kind b such that Γ, x:a ` b : c and Γ ` d : a. Then, [[b{x 7→ d}]]ξ =
[[b]]ξ,x=[[d]]ξ if x ∈ Var2, [[b]]ξ otherwise.

Proof. By induction on the structure of the derivation of Γ, x:a ` b :c. 3

8except for the sorts, it is due to [Geu95]

15

Lemma 5.18 (Compatibility of type interpretation with Γ-equivalence) If a and a′ are two Γ-
equivalent type constructors or two Γ-equivalent kinds, then [[a]]ξ = [[a′]]ξ.

Proof. Since �-* Γ preserves typing, it suffices to prove it for one rewrite, that is, if a and a′ are two type

constructors or two kinds such that a - a′, then [[a]]ξ = [[a′]]ξ. By induction on the type derivation of a, the only

non straightforward case is that of the application rule when there is a β-rewrite at the root. Then, the previous

lemma applies. 3

Definition 5.19 (Γ, ξ-substitutions) [Geu95] Given an environment Γ and a Γ-valuation ξ, a substi-
tution θ is a Γ, ξ-substitution, or is compatible with Γ and ξ, if dom(θ) ⊆ dom(Γ) and, for each variable
x ∈ dom(Γ), xθ ∈ [[Γ(x)]]ξ.

5.2 Strong normalization proof

Lemma 5.20 (Main lemma for strong normalization) [Geu95] 9 Assume that Γ is an environment,
ξ a valuation compatible with Γ and θ a substitution compatible with Γ and ξ. Assume also that, if f is
a function symbol of arity n ≥ 0 and type s1→ . . .→sn→s, and a1 . . . an are terms such that Γ ` ai :si
and ai ∈ [[si]]ξ (1 ≤ i ≤ n), then f(~aθ) ∈ [[s]]ξ. Then, Γ ` a :b implies that aθ ∈ [[b]]ξ.

Proof. By induction on the structure of the derivation of Γ ` a :b.

(ax) ` ? :2

?θ = ? ∈ [[2]]ξ = SN since ? is in normal form.

(sort) ` s :? (s ∈ S)

sθ = s ∈ [[?]]ξ = SN since s is in normal form.

(var)
Γ ` c :p

Γ, x:c ` x :c
(x ∈ Varp \ dom(Γ), p ∈ {?,2})

xθ ∈ [[c]]ξ since θ is compatible with Γ and ξ.

(weak)
Γ ` a :b Γ ` c :p

Γ, x:c ` a :b
(x ∈ Varp \ dom(Γ), p ∈ {?,2})

aθ ∈ [[b]]ξ by induction hypothesis since if ξ is compatible with Γ, x:c then ξ is compatible with Γ, and
if θ is compatible with Γ, x:c and ξ then θ is also compatible with Γ and ξ.

(cons)
Γ ` a1 :s1 . . . Γ ` an :sn

Γ ` C(a1, . . . , an) :s
(C ∈ Cn, τ(C) = s1→ . . .→sn→s, n ≥ 0)

Trivial.

(fun)
Γ ` a1 :s1 . . . Γ ` an :sn

Γ ` f(a1, . . . , an) :s
(f ∈ Fnt , t = s1→ . . .→sn→s, n ≥ 0)

By hypothesis.

(abs)
Γ, x:a ` b :c Γ ` Πx:a.c :q

Γ ` λx:a.b :Πx:a.c
(x 6∈ dom(Γ), q ∈ {?,2})

(λx:a.b)θ = λx:aθ.bθ. By stripping, Γ ` a : p ∈ {?,2} and Γ, x:a ` c : q. By induction hypothesis,
aθ ∈ [[p]]ξ = SN .

Suppose that a is a kind. Then, [[Πx:a.c]]ξ = [[a]]ξ→→
T
S∈[[a]][[c]]ξ∪{x 7→S}. Let S ∈ [[a]]. Then, ξ ∪{x 7→S}

is a valuation compatible with Γ, x :a. Let d ∈ [[a]]ξ. [[a]]ξ∪{x 7→S} = [[a]]ξ since x 6∈ FV (a). Hence,
θ ∪ {x 7→ d} is a substitution compatible with Γ, x :a and ξ ∪ {x 7→ S}. By induction hypothesis,
bθ{x 7→d} ∈ [[c]]ξ∪{x 7→S}. If q = ? then [[c]]ξ∪{x 7→S} ∈ [[?]] = RC. If q = 2 then [[c]]ξ∪{x 7→S} ∈ RC also.
Hence, by definition of reducibility candidates, (λx:aθ.bθ) d ∈ [[c]]ξ∪{x 7→S} and λx:aθ.bθ ∈ [[Πx:a.c]]ξ.

Suppose now that a is a type. Then, [[Πx:a.c]]ξ = [[a]]ξ→→ [[c]]ξ. Let d ∈ [[a]]ξ. Then, θ ∪ {x 7→ d} is
a substitution compatible with Γ, x :a and ξ. By induction hypothesis, bθ{x 7→ d} ∈ [[c]]ξ. If q = ?
then [[c]]ξ ∈ [[?]] = RC If q = 2 then [[c]]ξ ∈ RC also. Hence, by definition of reducibility candidates,
(λx:aθ.bθ) d ∈ [[c]]ξ and λx:aθ.bθ ∈ [[Πx:a.c]]ξ.

(app)
Γ ` a :Πx:b.c Γ ` d :b

Γ ` a d :c{x 7→d}
(a d)θ = (aθ) (dθ) and, by induction hypothesis, dθ ∈ [[b]]ξ.

If b is a kind then [[c{x 7→ d}]]ξ = [[c]]ξ∪{x 7→[[d]]ξ} and [[Πx : b.c]]ξ = [[b]]ξ →→
T
S∈[[b]][[c]]ξ∪{x 7→S}. Thus

(aθ) (dθ) ∈
T
S∈[[b]][[c]]ξ∪{x 7→S} ⊆ [[c]]ξ∪{x7→[[d]]ξ} since [[d]]ξ ∈ [[b]].

If b is a type then [[c{x 7→d}]]ξ = [[c]]ξ and [[Πx:b.c]]ξ = [[b]]ξ→→ [[c]]ξ. Thus (aθ) (dθ) ∈ [[c]]ξ.

9in [Geu95], there is no function symbol

16

(conv)
Γ ` a :b Γ ` b′ :p

Γ ` a :b′
(p ∈ {?,2}, b -∗βb′ or b′ -∗βb or b -∗Rb

′ or b′ -∗Rb)

By induction hypothesis, aθ ∈ [[b]]ξ and [[b]]ξ = [[b′]]ξ.

(prod)
Γ ` a :p Γ, x:a ` b :q

Γ ` Πx:a.b :q
(x 6∈ dom(Γ), p, q ∈ {?,2})

(Πx:a.b)θ = Πx:aθ.bθ and [[q]]ξ = SN .

By induction hypothesis, aθ ∈ [[p]]ξ = SN . Let us prove now that bθ ∈ SN . By correctness, if p = ?
then [[a]]ξ ∈ [[?]] = RC, and if p = 2 then [[a]]ξ ∈ RC.

Suppose that a is a kind and let S ∈ [[a]]. [[a]]ξ∪{x 7→S} = [[a]]ξ since x 6∈ FV (a). Hence, ξ ∪ {x 7→S} is
a valuation compatible with Γ, x:a and θ is a substitution compatible with Γ, x:a and ξ ∪ {x 7→S}. By
induction hypothesis, bθ ∈ [[q]]ξ∪{x 7→S} = SN .

Suppose now that a is a type. Since θ is compatible with Γ and ξ, dom(θ) ⊆ dom(Γ) and xθ = x.
Hence, ξ is a valuation compatible with Γ, x:a and θ is a substitution compatible with Γ, x:a and ξ. By
induction hypothesis, bθ ∈ [[q]]ξ = SN .

In both cases, aθ ∈ SN and bθ ∈ SN , hence Πx:aθ.bθ ∈ SN .

3

Theorem 5.21 (Strong normalization) [Geu95] 10 If the conditions of Lemma 5.20 on the preceding
page are satisfied then any well-typed term is strongly normalizable.

Proof. Let a be a term of type b in an environment Γ. Let φ be the function inductively defined on kinds as
follows:
· φ(?) = SN ,
· φ(Πx:K.K′) = the constant function from [[K]] to {φ(K′)} which associates φ(K′) to each r ∈ [[K]],
· φ(Πx:τ.K) = φ(K).

Now, let ξ be a valuation defined as follows: if α:K ∈ Γ then ξ(α) = φ(K). Then it is easy to see that ξ is a

valuation compatible with Γ: ξ(α) ∈ [[K]]. Furthermore, the identity substitution is compatible with Γ and ξ: if

x:c ∈ Γ then Γ ` c :p ∈ {?,2} and [[c]]ξ ∈ RC by correctness of the type interpretation, hence x ∈ [[c]]ξ. Then, by

the main lemma for strong normalization, a ∈ [[b]]ξ. By correctness of the type interpretation, either b = 2 and

[[b]]ξ = SN , or Γ ` b :p ∈ {?,2} and [[b]]ξ ∈ RC. Hence, [[b]]ξ ⊆ SN and a is strongly normalizable. 3

Hence, we can already set forth all the fundamental properties for the β-reduction alone.

Lemma 5.22 (β-reduction properties) The β-reduction relation enjoys the subject reduction, termi-
nation, and confluence properties. Hence any term a has a unique β-normal form (resp. βh-normal form)
denoted by βnf(a) (resp. βhnf(a)).

Proof. Subject reduction is proved in Lemma 4.11 on page 12. Strong normalization is easy to see. As

we restrict our attention to β-rewrites only, function symbols are trivially reducible since no rewrite can occur

at the root of a function headed term. Hence Theorem 5.21 applies. Finally, since the β-reduction is strongly

normalizable and locally confluent, it is confluent. 3

5.3 Reducibility of first-order function symbols

As we are going to use well-founded inductions to prove the reducibility of the function symbols, we recall
hereafter the necessary background about well-founded orderings. The interested reader may find more
details in [DJ90].

Definition 5.23 (Orderings)
· An order is well-founded if there is no strictly decreasing infinite chain.
· An order > on terms is monotonic if it is stable by substitution and context:
a > b ⇒ c[aθ]m > c[bθ]m.
· If >1 and >2 are two orders then >=(>1, >2) lex is their associated strict lexicographic ordering:
(a1, a2) > (b1, b2) if a1 >1 b1 or a1 =1 b1 and a2 >2 b2. If >1 =>2 => then it is denoted > lex .
This definition is naturally extended to n-uples.

10in [Geu95], there is no function symbol

17

· If > is an order then >mul is its associated strict multi-set ordering. It is the transitive closure of
the following relation: M ∪ {a}>mulM ∪ {b1, . . . , bn} (n ≥ 0) if a > bi (1 ≤ i ≤ n).

Lemma 5.24 (Well-founded orderings properties)
· If >1 and >2 are two well-founded orderings then so is (>1, >2) lex .
· If > is a well-founded ordering then so is >mul .
· If > is a well-founded monotonic ordering on terms then so is (>∪�) where � is the strict subterm
ordering.

Definition 5.25 (Cap and aliens) [JO97a] Given an injection ψ from Term to Var?, the cap of a term
a, denoted cap(a), is the first-order algebraic term inductively defined as follows:
· cap(C(a1, . . . , an)) = C(cap(a1), . . . , cap(an))
· cap(f(a1, . . . , an)) = f(cap(a1), . . . , cap(an)) if f ∈ F1,
· cap(a) = ψ(a) otherwise.

So, a = cap(a){~x 7→~b} where xi = ψ(bi) (1 ≤ i ≤ |~x|). The terms in ~b are called the aliens of a and their
multi-set is denoted by aliens(a).

Lemma 5.26 (Reducibility of first-order function symbols) [JO97a] 11 Assume that:
· the rules of R1 are conservative,
· -

R1 terminates on well-typed first-order algebraic terms.
Then, for any environment Γ, valuation ξ compatible with Γ, first-order function symbol f ∈ Fnt such
that t = s1→ . . .→ sn→ s and terms ai (1 ≤ i ≤ n), if Γ ` ai : si and ai ∈ [[si]]ξ (1 ≤ i ≤ n) then
f(a1, . . . , an) ∈ [[s]]ξ.

Proof. As f is a first-order function symbol, s ∈ S and [[s]]ξ = SN(s). Let b = f(a1, . . . , an). Then

b = cap(b){~x 7→ ~d} where {~d} = aliens(b).
Let us prove that any term b of type s such that the terms of aliens(b) are strongly normalizable is in

SN(s) by induction on (aliens(b), cap(b)) with ((-∗ ∪ �)mul ,
-∗

R1)
lex

standing for our order. This order is
well-founded since the aliens are strongly normalizable and -

R1 terminates on well-typed first-order algebraic
terms.

It suffices to prove that any reduct of b is in SN(s). If b is reducible then either a term in aliens(b) is reducible
or cap(b) is R1-reducible. Indeed, there cannot be β-rewrites in a first-order algebraic term and, by definition of
first-order algebraic terms, there cannot be rewrites whose redex covers both cap(b) and aliens(b). Let b′ be a
reduct of b at position p ∈ Pos(b).

If p ∈ Pos(cap(b)) then b′ = c′{~x 7→ ~d} such that cap(b′) = c′ and cap(b)
p-
R1 c

′. As the first-order rules are
conservative, aliens(b′) ⊆ aliens(b) and the induction hypothesis applies.

If p 6∈ Pos(cap(b)) then there exists i (1 ≤ i ≤ n) and a term e such that di - e and b′ = c{~x 7→ ~d′}
where d′i = e and d′j = dj (1 ≤ j ≤ n, j 6= i). Then cap(b′) = cap(b){xi 7→ cap(e)} and aliens(b′) =

(aliens(b) \ {di})
S
aliens(e). But {di} (-

+
∪ �)mul aliens(e) thus the induction hypothesis applies. 3

If there is no higher-order rewrite rule then the conservativity hypothesis can be dropped. In this
case, the proof must be done by induction on the pair made of the cap of the β-normal form of a,
called its extended cap, (the strong normalization and confluence of the β-reduction alone can be proved
beforehand; see Lemma 5.22 on the previous page), and its aliens in βR-normal forms (the aliens are
supposed strongly normalizable) [JO97a]. Indeed, higher-order rules can introduce new redexes which
may increase the cap via their higher-order variables. Therefore, this induction argument does not hold
when there are such variables, hence the need for conservativity in this case.

5.4 Reducibility of higher-order function symbols

The purpose of this section is to define a class of higher-order rewrite rules for which we are able to prove
their well-foundedness. It will have to include the recursors for strictly positive sorts.

Given a lefthand side rule term, the idea is to define a set of admissible righthand side rule terms
built from the reducible subterms of the lefthand side.

First, we begin by distinguishing a subclass of terms that will play a key role in the definition of the
higher-order rewrite rules schema. This subclass is intimately related to the structure of positive sorts.

11called “Principal Case” in [JO97a]

18

Definition 5.27 (Γ,s-terms) Given an algebraic type s and an environment Γ, a term a is a Γ,s-term
if it is typable in Γ by an algebraic type in which s occurs positively.

Definition 5.28 (Γ,s-subterm relation) Given an algebraic type s, an environment Γ and two terms
a and b, b is a Γ,s-subterm of a, a �Γ,s b, if and only if a � b and each superterm of b in a is a Γ,s-term.

Given a reducible term, not all its subterms are reducible. Hence, we define hereafter a relation
that catches some reducible subterms. Together with the variables of basic sort, these terms will be the
reducible subterms from which admissible righthand sides will be built.

Definition 5.29 (Term accessibility) [JO97b] Given two rule terms a and b, a is accessible in b if:
· a = b,
· b = C(~d) and a is accessible in one of the terms of ~d,
· b = λx:t.d and a is accessible in d (x 6∈ FV (a)).

Lemma 5.30 (Compatibility of accessibility with reducibility) Given two rule terms a, b, an ex-
tended algebraic type s, an extended algebraic environment Γ, a valuation ξ compatible with Γ and a
substitution θ, if Γ ` b : s, bθ ∈ [[s]]ξ and a is accessible in b then there is an extended algebraic type t
such that Γ ` a : t and aθ ∈ [[t]]ξ.

Proof. By induction on the structure of the proof that a is accessible in b. If b = a then this is trivial.

Suppose that b = C(~d), τ(C) = s1→ . . .→sn→s and a is accessible in di. Then bθ = C(~dθ) and, since bθ ∈ [[s]]ξ,

by definition of [[s]]ξ, diθ ∈ [[si]]ξ. Hence, the induction hypothesis applies. Suppose now that b = λx:t.d and a is

accessible in d. Then s = t→ t′, Γ, x:t ` d : t′ and bθ = λx:t.dθ. As x ∈ [[t]]ξ, (bθ)x ∈ [[t′]]ξ and, since reducibility

candidates are stable by reduction, dθ ∈ [[t′]]ξ. Thus, the induction hypothesis applies. 3

Lemma 5.31 (Basic inductive sorts) [JO97b] For any environment Γ, Γ-valuation ξ and basic sort
s, [[s]]ξ = SN .

Proof. By definition, [[s]]ξ ⊆ SN . Let us prove by induction on SN with (-∗ ∪ �) as order that

SN ⊆ [[s]]ξ. Let a ∈ SN and suppose that a -∗C(~b) where C ∈ C(s). Since s is a basic inductive sort,

τ(C) = s1→ . . .→sn→s where every si is also a basic inductive sort. As a is strongly normalizable, every bi is

also strongly normalizable. Hence, by induction hypothesis, every bi ∈ [[si]]ξ and a ∈ [[s]]ξ. 3

Now, let us have a look at the third rule of the recursor for ord, which is a typical example of strictly
positive sort:

rectord(limord(f),u,v,w) - w f λn:nat.rectord(f n,u,v,w)

To prove the strict decreasingness of the arguments of the recursive call, we would like to say that
limord(f) ”�” f n. The idea is then to neglect the term n in comparison to f : f is “critical” in a precise
sense defined below. Hence, in a recursive call, the actual arguments of f will not be compared with the
arguments of the recursive call, but instead with the critical subterms of the arguments of its recursive
call.

Definition 5.32 (Application decomposition) A term a can always be written a1 . . . an (n ≥ 1)
where a1 is not an application. a1 . . . an is called the application decomposition of a.

Definition 5.33 (Γ,s-critical subterm) 12 Assume that s is an algebraic type, Γ an environment and
a a Γ,s-term whose application decomposition is a1 . . . an (n ≥ 1). Then, the Γ,s-critical subterm of a,
χs

Γ
(a), is its smallest subterm a1 . . . ak (1 ≤ k ≤ n) such that a �Γ,s a1 . . . ak.

Such a smallest subterm always exists since the definition works at least for k = n.

In order to manage efficiently the fact that our function symbols have several arguments, we define
hereafter a class of well-founded orderings on sequences of terms that mix lexicographic and multi-set or-
derings. Its purpose is to enable users to do complex comparisons when trying to prove the decreasingness
of the arguments of a recursive call.

12notion first introduced by [JO97b] with a different, more involved formulation

19

Definition 5.34 (Status orderings) 13 A status of arity n (n ≥ 0) is a term of the form lex(t1, . . . , tp)
(p ≥ 0) where ti (1 ≤ i ≤ p) is either xj (1 ≤ j ≤ n) or a term of the form mul(xk1 , . . . , xkq) (1 ≤ kl ≤
n, 1 ≤ l ≤ q) such that each variable xi (1 ≤ i ≤ n) occurs at most once. A position i ∈ {1 . . . n} is
lexicographic if there exists j ∈ {1 . . . p} such that tj = xi. A status term is a status whose variables are
substituted by terms of CAIC.

Let stat be a status of arity n ≥ 0, I = {i1, . . . , ik} a subset of the lexicographic positions of stat,
called inductive positions, S = (>i1 , . . . , >ik) a sequence of orders on terms indexed by I, and > an order
on terms. Then, we define the corresponding status ordering, >Sstat on sequences of terms as follows:
· (a1, . . . , an) >Sstat (b1, . . . , bn) iff stat{~x 7→~a} >Sstat stat{~x 7→~b},
· lex(c1, . . . , cp) >Slex(t1,...,tp) lex(d1, . . . , dp) iff (c1, . . . , cp) (>St1 , . . . , >

S
tp)

lex
(d1, . . . , dp),

· >Sxi=>i if i ∈ I, > otherwise,
· mul(c1, . . . , cq) >mul(xk1 ,...,xkq) mul(d1, . . . , dq) iff {c1, . . . , cq}>mul {d1, . . . , dq}.

Note that it boils down to the usual lexicographic ordering if stat = lex(x1, . . . , xn) or to the multi-set
ordering if stat = lex(mul(x1, . . . , xn)). It is easy to see that if >,>i1 , . . . , >ik are well-founded then so
is >Sstat.

Definition 5.35 (Function status and inductive positions) [JO97b] From now on, we will assume
that every function symbol f ∈ Fnt has an associated status statf of arity n and an associated set of
inductive positions Ind(f) ⊆ {1 . . . n} that are lexicographic positions in statf .

Inductive positions are used in case of recursive definitions and correspond to the arguments on which
the induction is done.

Definition 5.36 (Critical interpretation) [JO97b] Given an environment Γ and a function symbol f
of arity n ≥ 0 and type s1→ . . .→sn→s, we define the critical interpretation function φf,Γ as follows:
· φf,Γ(a1, . . . , an) = (φ1

f,Γ
(a1), . . . , φnf,Γ(an)),

· φif,Γ(ai) = ai if i 6∈ Ind(f),
· φif,Γ(ai) = χsi

Γ
(ai) if i ∈ Ind(f).

Definition 5.37 (Critical ordering) Let f(~c) - e be an admissible rewrite rule where f is a function
symbol of arity n ≥ 0 and type s1→ . . .→sn→s, and S = (�Γf(~c),si

)i∈Ind(f). Then, we define the critical
ordering of f , >f , as being �Sstatf .

Besides, in the case where Ind(f) = {1} and statf = lex(x1), given a rule term u and a position m
in u, we inductively define the extended critical ordering of f , >u,mf , as follows: c1 >

u,m
f c′1 iff

· c1 �Γ,s1 χ
s1
Γf(~c)

(c′1),

· or χs1
Γf(~c)

(c′1) = yi 6∈ FV (c1), u = K1[λx:t.K2[a λ~y :~t.x~b]m2]m1 , bk = λ~z :~t′.u|m, a has no variable

bound in K2, and c1 >
u,m′

f a, where m′ is the position of a in u.

Definition 5.38 (General schema) 14 An admissible rewrite rule f(~c) - e where τ(f) = s1→ . . .→
sn→s satisfies the general schema if and only if:
· ∀ i ∈ Ind(f), χsi

Γ
(ci) = ci and ci 6∈ Var,

· e ∈ RHSf (~c)
where RHSf (~c) is the least set of rule terms containing:
· every variable of Var? \ FV (~c),
· every free variable of ~c whose type in Γf(~c) is a basic inductive sort,
· every term a accessible in ~c such that if a is reducible then every subterm of a is also reducible,

and closed under the following operations, assuming that the terms on which they are applied are
typable in some compatible extensions of Γf(~c):

· construction: given a constructor C ∈ Cn (n ≥ 0) such that τ(C) = t1 → . . . → tp → t, if
ei ∈ RHSf (~c) (1 ≤ i ≤ p) is of type ti, then C(e1, . . . , ep) ∈ RHSf (~c) and is of type t,
· defined application: given a function symbol g <F f of type t1 → . . . → tp → t, if ei ∈
RHSf (~c) (1 ≤ i ≤ p) is of type ti, then g(e1, . . . , ep) ∈ RHSf (~c) and is of type t,

13inspired from [JO97a]
14inspired from the new “General schema” of Jouannaud and Okada [JO97b]

20

· application: if u ∈ RHSf (~c) is of type t→ t′ and v ∈ RHSf (~c) is of type t, then u v ∈ RHSf (~c)
and is of type t′,
· abstraction: if u ∈ RHSf (~c) is of type t′ then λx:t.u ∈ RHSf (~c) and is of type t→ t′,
· reduction: if u ∈ RHSf (~c) is of type t and u - u′ then u′ ∈ RHSf (~c) and is of type t,
· admissible recursive call:
· direct case: if ~c′ are n terms of RHSf (~c) of respective type s1, . . . , sn, and ~c >f φf,Γ(~c′), then
f(~c′) ∈ RHSf (~c) and is of type t.
· indirect case: if Ind(f) = {1}, statf = lex(x1), u ∈ RHSf (~c) is of type t, m ∈ Pos(u), m|m

is of type s, ~c′ are n terms of RHSf (~c) of respective types s1, . . . , sn, and c1 >
u,m
f χs1

Γf(~c)
(c′1),

then u[f(~c′)]m ∈ RHSf (~c) and is of type t.

Lemma 5.39 (Strictly positive recursors) The recursor rules for strictly positive inductive sorts
(Definition 2.20 on page 7) satisfy the general schema.

Proof. Let s be a strictly positive inductive sort and t an algebraic type. The rules for recst are clearly well-
typed, algebraic and type-preserving (see Section 8 on page 28), hence they are admissible. Besides, χsΓ(Ci(~a)) =

Ci(~a) and it easy to see that the righthand side bi ~a ~b′ belong to RHSrecst(Ci(~a),~b).

Let us take Ind(recst) = {1} and statrecst = lex(x1). The first argument of a recursive call is of the form

(aj ~x) where ~x are bound variables. Hence, χsΓ(aj ~x) = aj and Ci(~a) �Γ,s aj since Ci(~a) has type s and aj has type

si1→ . . .→sini→s where sik are built from strictly positive inductive sorts strictly smaller than s in ≥S . 3

Lemma 5.40 (Positive recursors) The recursor rules for positive inductive sorts (Definition 2.20 on
page 7) satisfy the general schema.

Proof. 3

Lemma 5.41 (Well-typedness of righthand sides) Given an admissible rewrite rule f(~c) - e fol-
lowing the general schema, there exists an algebraic type s such that Γf(~c) ` e :s.

Proof. By induction on the structure of e ∈ RHSf (~c). e cannot be a variable of Var? \ FV (~c) since

FV (e) ⊆ FV (~c). Variables of Var? \ FV (~c) are introduced through abstractions in which their type is an

algebraic one. The case where e is accessible in ci has already been treated in Lemma 5.30 on page 19. Besides,

all the other constructions are well-typed. 3

Finally, we give a proof of reducibility for higher-order function symbols that satisfy the general
schema. The proof relies on the definition of an interpretation of recursive calls whose abstract properties
are defined below. We will then be left with the problem of finding such an interpretation.

Definition 5.42 (Admissible recursive call interpretation) Given a function symbol f of arity n ≥
0, a recursive call interpretation is given by:

· a status ordering ≥Sstatf where ≥ is an order on terms and S = (≥i)i∈Ind(f) is a sequence of orders
on terms indexed by Ind(f),
· an interpretation function Φf,Γ = (Φ1

f,Γ
, . . . ,Φnf,Γ) for each environment Γ.

A recursive call interpretation is admissible if it satisfies the following properties:
(Well-foundedness) Assume that f(~c) - e is an admissible rewrite rule following the general
schema, f(~c′) is a subterm of e such that ~c >f φf,Γ(~c′), and θ is a Γf(~c)-substitution. Then,
Φf,Γ(~cθ) >Sstatf Φf,Γ(~c′θ).

(Compatibility) Assume that s is the output type of f , ~a and ~a′ are two strongly normalizable
sequences of terms such that Γ ` f(~a) :s and ~a -∗ ∪� ~a′. Then, Φf,Γ(~a) ≥Sstatf Φf,Γ(~a′).

Lemma 5.43 (Reducibility of higher-order function symbols) Assume that:
· the rewrite rules are admissible (Definition 2.17 on page 5),
· the function ordering >F is well-founded on Fω (excluding mutually recursive definitions for higher-
order function symbols),

21

· the higher-order rules satisfy the general schema (Definition 5.38 on page 20),
· the first-order function symbols are reducible,
· for each higher-order function symbol f , there exists an admissible recursive call interpretation
(≥Sstatf ,Φf,Γ).

Then, for any environment Γ, Γ-valuation ξ, higher-order function symbol f ∈ Fnt of type t = s1→ . . .→
sn→s, and sequence of n terms ~a, if Γ ` ai :si and ai ∈ [[si]]ξ (1 ≤ i ≤ n) then f(~a) ∈ [[s]]ξ.

Proof. The proof is done with three levels of induction: on the function symbols, on the sequence of terms
to which f is applied and on the righthand side structure of the defining rules of f .

As the definition order is well-founded, we can reason by induction on it. So, we suppose that any other
symbol appearing in the defining rules of f have the desired property.

There exists s′ ∈ S such that s = sn+1→ . . .→ sn+k→s′ (k ≥ 0). Hence [[s]]ξ = [[sn+1]]ξ→→ . . .→→ [[sn+k]]ξ→→
[[s′]]ξ and f(~a) ∈ [[s]]ξ if and only if, for any terms d1, . . . , dk such that di ∈ [[sn+i]]ξ (1 ≤ i ≤ k), f(~a) ~d ∈ SN(s′).

Let us prove this property by induction on (~d,Φf,Γ(~a),~a) with ((-∗)lex ,≥
S
statf , (-∗)lex)

lex
as well-founded

order.
Let b = f(~a) ~d. It suffices to prove that every reduct b′ of b is in SN(s′).

If f(~a) is not reduced at its root then either one ai or one di is reduced. Thus b′ = f(~a′) ~d′ such that ~a - ~a′ or
~d - ~d′. As reducibility candidates are stable by reduction, a′i ∈ [[si]]ξ (1 ≤ i ≤ n) and d′i ∈ [[sn+i]]ξ (1 ≤ i ≤ k).
If one ai is reduced, by compatibility of the interpretation, Φf,Γ(~a) ≥Sstatf Φf,Γ(~a′). Hence, in both cases, the
induction hypothesis applies.

If f(~a) is reduced at its root then ~a = ~cθ and b′ = eθ ~d for some terms ~c, e and substitution θ such that
f(~c) - e is the applied rule. Since rewrite rules are admissible, there exists a unique algebraic environment
Γf(~c)

�-*
ΓΓ|FV (~c). Hence ξ is a Γf(~c)-valuation.

Let x ∈ FV (e). If x is a free variable of ci whose type Γf(~c)(x) is a basic sort then xθ ∈ [[Γf(~c)(x)]]ξ since
[[Γf(~c)(x)]]ξ = SN and xθ is a subterm of ai which is strongly normalizable. Otherwise, x is accessible in ci. Since
Γf(~c) ` ci :si and ciθ = ai ∈ [[si]]ξ, by compatibility of accessibility with reducibility, xθ ∈ [[Γf(~c)(x)]]ξ. Hence θ is
compatible with Γf(~c) and ξ. By compatibility of type interpretation with Γ-equivalence, θ is compatible with Γ
and ξ.

Then, let us show by induction on the structure of e ∈ RHSf (~c) that, if Γ ` e : t then, for any Γ, ξ-substitution
θ, eθ ∈ [[t]]ξ.
· e = x ∈ Var? \ FV (~c): By compatibility of θ with Γ and ξ, eθ ∈ [[t]]ξ.
· e is a free variable of ci whose type is a basic sort: By compatibility of θ with Γ and ξ, eθ ∈ [[t]]ξ.
· e is accessible in ci: By compatibility of accessibility with reducibility, eθ ∈ [[t]]ξ.
· construction: e = C(e1, . . . , ep) and τ(C) = t1→ . . .→ tp→ t. By induction hypothesis on ei, eiθ ∈ [[ti]]ξ.

Hence eθ ∈ [[t]]ξ.
· defined application: e = g(e1, . . . , ep) where τ(g) = t1→ . . .→ tp→ t and g <F f . By induction hypothesis,
eiθ ∈ [[ti]]ξ. Hence, eθ ∈ [[t]]ξ, by hypothesis on first-order function symbols, or by outer induction hypothesis
on higher-order function symbols since g <F f .
· application: e = u v. By induction hypothesis on u and v, uθ ∈ [[t′→ t]]ξ and vθ ∈ [[t′]]ξ. Hence eθ ∈ [[t]]ξ.
· abstraction: e = λx:t1.u and t = t1→ t2 such that Γ, x:t1 ` u : t2. Let v ∈ [[t1]]ξ. By induction hypothesis on
u, uθ{x 7→v} ∈ [[t2]]ξ. Hence (λx:t1.uθ) v ∈ [[t2]]ξ and eθ ∈ [[t]]ξ.
· reduction: e is a reduct of a term u ∈ RHSf (~c). As terms of RHSf (~c) are typable by algebraic types

in Γf(~c)
�-*

ΓΓ|FV (~c), and algebraic types are Γ-consistent, Γ ` u : t and, by induction hypothesis on u,
uθ ∈ [[t]]ξ. Since reducibility candidates are stable by reduction, eθ ∈ [[t]]ξ.
· admissible recursive call:

· direct case: e = f(~c′) and ~c >f φf,Γ(~c′). By well-foundedness of the recursive call interpretation,

Φf,Γ(~cθ) >Sstatf Φf,Γ(~c′θ). Hence, the outer induction hypothesis on ~c′θ applies.

· indirect case: Ind(f) = {1}, statf = lex(x1), e = u[f(~c′)]m and c1 >
u,m
f χs1Γ (c′1). Let us prove the

result by induction on the proof that c1 >
u,m
f χs1Γ (c′1)

· c1 >f χs1Γ (c′1): Then, ~c >f φf,Γ(~c′) and, by well-foundedness of the recursive call interpretation,

Φf,Γ(~cθ) >Sstatf Φf,Γ(~c′θ). Hence, the outer induction hypothesis on ~c′θ applies and f(~c′θ) ∈ [[s]]ξ.

Besides, it is easy to see that eθ = uθ[f(~c′θ)]m ∈ [[t]]ξ, since, by induction hypothesis on u, every
subterm of u is reducible. Hence, replacing a subterm of uθ by a reducible term with the good
type at such a position gives a reducible term.
· χs1Γ (c′1) = yi 6∈ FV (c1), u = K1[λx:t.K2[aλ~y:~t.x~b]m2]m1 , bk = λ~z:~t′.u|m, a has no variable bound

in K2, and c1 >
u,m′

f a, where m′ is the position of a in u.

Let v = λx:t.K2[aλ~y:~t.x~b]m2 and R be the set of reducts w′ of vθ[f(~c′θ)]p (m = m1 ·p′) such that
if w′ is reduced then one yi is instanciated. Such reducts can be obtained by replacing subterms
of reducts of vθ by reducts of f(~c′θ). Indeed, since f(~c′θ) is an argument of x which cannot be

22

reduced or instanciated, there cannot be interactions between the reductions of vθ and those of
f(~c′θ).
By induction hypothesis on u and ~c′, uθ and ~c′θ are strongly normalizable. Hence, vθ is strongly
normalizable too. Besides, since, by definition of the general schema, c1 6∈ Var, a reduct of f(~c′θ)

is of the form f(~d) such that ~c′θ -∗ ~d. Hence, f(~c′θ) is strongly normalizable.
Therefore, R is a finite set. A reduct of an element of R is either in normal form or else of the
form v′[x ~b′]p′ where b′k = λ~z:~t′.f(c′′1 , ~d) and c′′1 is a subterm of a reduct of aθ, since a is supposed
to have no variable bound in K2.
In the first case, if it is a constructor headed term then it must be a reduct of uθ, hence it is
reducible. In the other case, by compatibility of the recursive call interpretation and by induc-

tion hypothesis on c1 >
u,m′

f a, we obtain that v′[x ~b′]p′ is reducible. Hence, K1θ[v
′[x ~b′]p′]m1 is

reducible.

3

5.5 Recursive call interpretation

In this section, we define a recursive call interpretation and prove that it is admissible, hence proving the
reducibility of higher-order function symbols satisfying the general schema.

Since the interpretation must be compatible with the reduction relation, the idea is to interpret a
term by its reducts. Besides, since the comparisons are done with critical subterms, we need to erase all
subterms that are not Γ,s-terms. For these two ideas to be compatible, we need to take into account only
those reducts obtained via rewrites at “positive positions”.

Definition 5.44 (Γ,s-reduction relation) Given an algebraic type s and an environment Γ, we define
the Γ,s-rewrite relation on Γ,s-terms as follows:
· a ε-

Γ,s a
′ if and only if a ε- a′.

· C(~a) i·m-
Γ,s C(~a′) if and only if ai

m-
Γ,s a

′
i.

· f(~a) i·m-
Γ,s f(~a′) if and only if ai

m-
Γ,s a

′
i.

· λx:a.b 2·m-
Γ,s λx:a.b′ if and only if b m-

Γ′,s b
′ where Γ′ = Γ, x:a.

· a b 1·m-
Γ,s a

′ b if and only if a m-
Γ,s a

′.

· a b 2·m-
Γ,s a b

′ if and only if b m-
Γ,s b

′.
A term a Γ,s-rewrites to a term a′, a -Γ,s a

′, if there exists m ∈ Pos(a) such that a m-
Γ,s a

′. The Γ,s-
reduction relation is the reflexive and transitive closure of the Γ,s-rewrite relation. A term is in Γ,s-normal
form if it cannot be Γ,s-reduced.

Given a strongly normalizable term a, we denote by Rs
Γ
(a) the least set containing a and stable by

Γ,s-reduction.
We define the anti-Γ,s-rewrite relation by: a m-

6Γ,s a
′ if and only if a m- a′ but a is not Γ,s-reducible at

position m.

Definition 5.45 (Erasing function) [JO97b] Given an algebraic type s, an environment Γ and a new
constant ⊥b for each Γ-type b, we define the following erasing function Ψs

Γ
on every Γ-term a of type b,

· Ψsi
Γ

(a) = ⊥b if a is not a Γ,s-term.
Otherwise, Ψsi

Γ
(a) is defined by case on a:

· Ψsi
Γ

(x) = x,
· Ψsi

Γ
(C(a1, . . . , an)) = C(Ψsi

Γ
(a1), . . . ,Ψsi

Γ
(an)),

· Ψsi
Γ

(f(a1, . . . , an)) = f(Ψsi
Γ

(a1), . . . ,Ψsi
Γ

(an)),
· Ψsi

Γ
(λx:a.b) = λx:a.Ψsi

Γ′
(b) where Γ′ = Γ, x:a,

· Ψsi
Γ

(a b) = Ψsi
Γ

(a) Ψsi
Γ

(b).

Definition 5.46 (Recursive call interpretation) 15 Given an environment Γ, and a function symbol
f of arity n ≥ 0 and type s1→ . . .→ sn→ s, we define its recursive call interpretation function Φf,Γ on
strongly normalizable Γ-terms as follows:

· Φf,Γ(a1, . . . , an) = (Φ1
f,Γ

(a1), . . . ,Φnf,Γ(an))

15inspired from the interpretation of [JO97b]

23

· Φif,Γ(ai) = {ai} if i 6∈ Ind(f)
· Φif,Γ(ai) = Ψ̂si

Γ
(Rsi

Γ
(χsi

Γ
(ai))) if i ∈ Ind(f)

where Ψ̂si
Γ

is the multi-set extension of Ψsi
Γ

.
Its associated recursive call interpretation order is ((-∗ ∪ �)mul)statf .

Lemma 5.47 (Rs
Γ

properties) Assume that s is an algebraic type, Γ is an environment and, a and b
are two strongly normalizable terms.

1) If a �Γ,s b then Rs
Γ
(a) (�Γ,s)mulR

s
Γ
(b).

2) If a -Γ,s b then Rs
Γ
(a) ⊇ Rs

Γ
(b).

3) If a -6Γ,s b then Rs
Γ
(a) ((-6Γ,s)

∗)
mul

Rs
Γ
(b).

Proof.
1) Suppose that b = a|m. Let b′ ∈ RsΓ(b). Since a �Γ,s b, each superterm of b in a is a Γ,s-term. Hence,
a[b′]m ∈ RsΓ(a) and a[b′]m �Γ,s b

′.
2) Immediate.

3) Let b′ ∈ RsΓ(b). Suppose that a
m-
6Γ,s b (m ∈ Pos(a)). If a is not a Γ,s-term then, by subject reduction, b

is not a Γ,s-term either. Hence, RsΓ(a) = {a} ((-6Γ,s)
∗)
mul

RsΓ(b) = {b}. Otherwise, there exists a superterm
c = a|m1 (m = m1 · m2) of a|m which is not a Γ,s-term but whose superterms are Γ,s-terms. Then,

c
m2-
6Γ,s c

′ = b|m1 , b = a[c′]m1 , and a Γ,s-reduction path from b to b′ is also a Γ,s-reduction path from a to a′.
Hence, it suffices to replace in b′ all the occurrences of c′ by c to obtain a term a′ such that a′(-6Γ,s)

∗b′.
3

Lemma 5.48 (Ψs
Γ

properties) Assume that s is an algebraic type, Γ is an environment and, a and b
are two terms.

1) If Γ ` a :b then Γ ` Ψs
Γ

(a) :b.
2) If a �Γ,s b then Ψs

Γ
(a) �Γ,s Ψs

Γ
(b).

3) If a -6Γ,s b then Ψs
Γ

(a) = Ψs
Γ

(b).

Proof.
1) Trivial.
2) Suppose that b = a|m. Since each superterm of b in a is typable by an algebraic type in which s occurs
positively, Ψs

Γ (a) = Ψs
Γ (a)[Ψs

Γ (b)]m. Since Ψs
Γ preserves typing, Ψs

Γ (a) �Γ,s Ψs
Γ (b).

3) Suppose that a
m-
6Γ,s b. If a is not a Γ,s-term then Ψs

Γ (a) = Ψs
Γ (b) = ⊥d where d is a Γ-type of a. Otherwise,

b has a superterm c = a|m1 (m = m1 ·m2) in a which is not a Γ,s-term but whose superterms are Γ,s-terms.

Hence, Ψs
Γ (a) = Ψs

Γ (a)[⊥d]m1 where d is a Γ-type of c. Since c
m2-
6Γ,s c

′ = b|m1 , b = a[c′]m1 and c′ is not a
Γ,s-term, Ψs

Γ (b) = Ψs
Γ (a).

3

Lemma 5.49 (Ψ̂s
Γ

properties) Assume that s is an algebraic type, Γ is an environment and, a and b
are two strongly normalizable terms.

1) If a �Γ,s b then Ψ̂s
Γ

(Rs
Γ
(a)) (�Γ,s)mul Ψ̂

s
Γ

(Rs
Γ
(b)).

2) If a - b then Ψ̂s
Γ

(Rs
Γ
(a)) ((-6Γ,s)

∗)
mul

Ψ̂s
Γ

(Rs
Γ
(b)).

Proof.
1) By property of RsΓ and Ψs

Γ .

2) Let b′ ∈ cΨs
Γ (RsΓ(b)). Then, b′ = Ψs

Γ (b′′) where b′′ ∈ RsΓ(b). If a -Γ,s b then, by property of RsΓ ,
RsΓ(a) ⊇ RsΓ(b), hence the result. Otherwise, we get the result by property of RsΓ and Ψs

Γ .
3

Lemma 5.50 (Well-foundedness of the interpretation) Assume that f(~c) - e is an admissible
rewrite rule following the general schema, f(~c′) is a subterm of e such that ~c �′statf φf,Γ(~c′), and θ is a
Γf(~c)-substitution. Then, Φf,Γ(~cθ) ((�)mul)statf Φf,Γ(~c′θ).

Proof. Let us assume that ~c �statf φf,Γ(~c′) results from the comparison between ci and φjf,Γ(c′j). There are
two cases:

24

· If i ∈ Ind(f), then j = i since inductive positions are lexicographic. Hence, φif (c′i) = χsiΓ (ci), Φif,Γ(ciθ) =dΨsi
Γ (RsiΓ (χsiΓ (ciθ))) and Φif,Γ(c′iθ) = dΨsi

Γ (RsiΓ (χsiΓ (c′iθ))). By definition of the general schema, χsiΓ (ci) = ci and
ci �Γ,si χ

si
Γ (c′i). Hence, ci cannot be a variable and χsiΓ (ciθ) = χsiΓ (ci)θ = ciθ. Besides, ciθ �Γ,si χ

si
Γ (c′i)θ �

Γ,si χ
si
Γ (c′iθ). By property of dΨsi

Γ , dΨsi
Γ (RsiΓ (χsiΓ (ciθ))) (�Γ,si)mul

dΨsi
Γ (RsiΓ (χsiΓ (c′iθ))), hence the result.

· If i 6∈ Ind(f), then j 6∈ Ind(f). Hence, φjf (c′j) = c′j , Φif,Γ(ciθ) = {ciθ} and Φif,Γ(cjθ) = {cjθ}. Since

ciθ � c′jθ, Φif,Γ(ciθ) (�)mul Φjf,Γ(c′jθ), hence the result.
3

Lemma 5.51 (Compatibility of the interpretation) Assume that f is a function symbol of arity
n ≥ 0 and type s1→ . . .→ sn→ s, ~a and ~a′ are two strongly normalizable sequences of terms such that
Γ ` f(~a) :s and ~a -∗ ∪� ~a′. Then, Φf,Γ(~a) ((-∗ ∪ �)mul)statf Φf,Γ(~a′).

Proof. The properties of dΨsi
Γ insures the compatibility of Φf,Γ with � . For -∗, it suffices to prove it for

one rewrite. Suppose that ai - a′i (1 ≤ i ≤ n). We distinguish two cases:

· If i 6∈ Ind(f), then Φif,Γ(ai) = {ai} and Φif,Γ(a′i) = {a′i}. Since ai - a′i, Φif,Γ(ai) (-∗)mul Φif,Γ(a′i), hence
the result.
· If i ∈ Ind(f), then Φif,Γ(ai) = Ψsi

Γ (RsiΓ (χsiΓ (ai))) and Φif,Γ(a′i) = Ψsi
Γ (RsiΓ (χsiΓ (a′i))). Let b1 . . . bn′ (n′ ≥ 1) be

the application decomposition of ai and suppose that χsΓ(a) = a1 . . . ak (1 ≤ k ≤ n′). Again, we distinguish
four cases:

· If ai is reduced in bj (k + 1 ≤ j ≤ n) then, by subject reduction, χsiΓ (a′i) = χsiΓ (ai), hence the result.

· If ai is reduced in bj (1 ≤ j ≤ k, k ≥ 2) then χsiΓ (ai) - χsiΓ (a′i) and, by property of dΨsi
Γ , dΨsi

Γ (RsiΓ (χsiΓ (ai)))

((-6Γ,s)
∗)
mul

dΨsi
Γ (RsiΓ (χsiΓ (a′i))), hence the result.

· If ai is reduced in b1 and k = 1 then χsiΓ (ai) - b′1 and χsiΓ (a′i) = χsiΓ (b′1). By property of dΨsi
Γ ,dΨsi

Γ (RsiΓ (χsiΓ (ai))) ((-6Γ,s)
∗)
mul

dΨsi
Γ (RsiΓ (b′1)) (�Γ,si)mul

dΨsi
Γ (RsiΓ (χsiΓ (b′1))), hence the result.

· Suppose now that n′ ≥ 2, b1 = λx:b.c and a′i = c{x 7→b2} b3 . . . bn. There are three cases:

· If k ≥ 3 then χsiΓ (ai) - χsiΓ (a′i). By property of dΨsi
Γ , dΨsi

Γ (RsiΓ (χsiΓ (ai))) ((-6Γ,s)
∗)
mul

dΨsi
Γ (RsΓ(χsiΓ (a′i))),

hence the result.
· If k = 2 then χsiΓ (a′i) = χsiΓ (c{x 7→ b2}). By property of dΨsi

Γ , dΨsi
Γ (RsiΓ (χsiΓ (ai))) ((-6Γ,s)

∗)
muldΨsi

Γ (RsiΓ (c{x 7→b2})) (�Γ,si)mul R
si
Γ (χsiΓ (a′i)), hence the result.

· If k = 1 then, by definition of a Γ,s-critical subterm, there exists some algebraic types t and t′ such
that Γ ` λx:b.c : t, Γ ` (λx:b.c) b2 : t′ and si occurs positively in t and t′. Then, t = t2→ t′ where t2
is a type for b2 and s does not occur or occurs negatively in t2. Hence, c 6= x, χsiΓ (a′i) = χsiΓ (c){x 7→
b2}, RsiΓ (χsiΓ (a′i)) = {d{x 7→ b2} | d ∈ RsiΓ (χsiΓ (c))} and dΨsi

Γ (RsiΓ (χsiΓ (a′i))) = dΨsi
Γ (RsiΓ (χsiΓ (c))). Be-

sides, dΨsi
Γ (RsiΓ (χsiΓ (ai))) = {λx:b.c′ | c′ ∈ dΨsi

Γ (RsiΓ (c))} (�)mul
dΨsi

Γ (RsiΓ (c)) (�Γ,si)mul
dΨsi

Γ (RsiΓ (χsiΓ (c))),
hence the result.

3

5.6 Strong normalization of CAIC

Now, all the conditions are met to set forth the strong normalization property of our calculus.

Theorem 5.52 (Strong normalization of CAIC) Assume that:
· the rewrite rules are admissible (Definition 2.17 on page 5),
· the rules of R1 are conservative (if Rω 6= ∅),
· -

R1 terminates on well-typed first-order algebraic terms,
· the function ordering >F is well-founded on Fω (excluding mutually recursive definitions for higher-
order function symbols),
· the rules of Rω satisfy the general schema (Definition 5.38 on page 20).

Then, every well-typed term is strongly normalizable.

Proof. By Lemmas 5.26 on page 18, 5.43 on page 21, 5.50 on the preceding page, 5.51 and Theorem 5.21 on

page 17. 3

25

6 Confluence

We recall some definitions and results about confluence. The interested reader may find more details in
[DJ90].

Definition 6.1 (Confluence) - is confluent if, for any terms a, b, c such that a -∗b and a -∗c,
there exists a term d such that b -∗d and c -∗d.

- is locally confluent if, for any terms a, b, c such that a - b and a - c, there exists a term d
such that b -∗d and c -∗d.

Lemma 6.2 (Newman) [New42] If a relation is strongly normalizable and locally confluent then it is
confluent.

Definition 6.3 (Critical pair) Given two rewrite rules l1 - r1 and l2 - r2 with no variable in com-
mon, the critical pair of l2 - r2 on l1 - r1 at a non variable position p ∈ Pos(l1), if it exists, is the pair
of terms (r1θ, l1θ[r2θ]m) where θ is the most general unifier of l1|m and l2 (assuming that the abstractions
are function symbols, and bound variables are constants).

It is said trivial if l2 - r2 is a renamed version version of l1 - r1 and m = ε.
A critical pair is confluent if its elements have a common reduct.

Lemma 6.4 (Critical pairs) [Hue80] Given a set R1 of first-order rewrite rules, if its (non trivial)
critical pairs are confluent then -

R1 is locally confluent.

Theorem 6.5 (Confluence) [BFG97] Assume that:
· the strong normalization conditions are satisfied (Theorem 5.52 on the previous page),
· R1 is locally confluent on well-typed first-order algebraic terms,
· Rω do not introduce critical pairs with R1, Rω and β,

then every well-typed term is confluent.

Proof. The β-reduction is locally confluent and the critical pairs between -
R1 and -

β are confluent. 3

Theorem 6.6 (Full conversion admissibility) If the conditions for the strong normalization and for
the confluence are satisfied (Theorem 6.5) then the following conversion rule is deducible:

(conv”)
Γ ` a :b Γ ` b′ :p

Γ ` a :b′
(p ∈ {?,2}, b�-* b′)

Theorem 6.7 (Logical soundness) If the conditions for the strong normalization and for the conflu-
ence are satisfied (Theorem 6.5) then there cannot be proofs of false = Πx:?.x.

Proof. In [Bar93], Proposition 5.2.31 says that in any PTS extending the system F 16, if ` a : false then a
has no normal form. So, if every well-typed term is strongly normalizable, there cannot exist proofs of false. We
reproduce that proof here.

Suppose a has a normal form a′. Then, by subject reduction, ` a′ :false. As ` false :?, a′ is an object. So,

by the typed structure lemma, it can only be a function symbol, a variable, an application or an abstraction. If a′

is a function symbol then, by stripping, false�-* Γs ∈ TS which is not possible. a′ cannot be a variable since it is

typed in an empty environment. If a′ is an application then it can be decomposed as b1 . . . bn (n ≥ 2) such that b1
is not an application. But then, ` b1 :Π~y:~c.false for some terms ~c. b1 cannot be a function symbol nor a variable,

so it must be an abstraction which is not possible since a′ is in normal form. Therefore a′ is an abstraction λx:?.b

and, by stripping, x:? ` b : x. b cannot be a function symbol nor an abstraction. If it is an application then it

can be decomposed as c1 . . . cn (n ≥ 2) such c1 is not an application. As c1 cannot be a function symbol nor

an abstraction, it must be a variable. So c1 = x and, by stripping, x:? ` x : Π~y:~d.x for some terms ~d. Hence,

?�-* Π~y:~d.x which is not possible. 3

16simply typed λ-calculus extended with polymorphism

26

7 Type-checking decidability

In this section, we assume that the conditions for the strong normalization and for the confluence are
satisfied (Theorem 6.5 on the preceding page). The equality used in the algorithms is the α-equivalence.
In practice, this is avoided by using De Bruijn’s terms [dB72].

Algorithms are written in a Caml-Light-like syntax [LM92].
nf denotes a function that takes a term as argument and returns its βR-normal form.
type denotes a function that takes a function symbol or a constructor as argument and returns its

algebraic type.

Definition 7.1 (Type-deduction algorithm) We define hereafter a recursive function called deduce
which takes an environment Γ and a term a of CAIC as arguments. Its goal is to compute a type of a in
the environment Γ, if such a type exists, or to raise an exception called error.

letrec deduce Γ a =
match a with

2 -> raise error
| ? -> 2

| s -> ?
| x -> if x ∈ Γ then (nf Γ(x)) else raise error
| Πx:b.c -> if (deduce Γ b) 6∈ {?,2} then raise error

else let q=(deduce (Γ, x:b) c) in
if q ∈ {?,2} then q else raise error

| λx:b.c -> if (deduce Γ b)6∈ {?,2} then raise error
else let b′=(nf b) in let e=(deduce (Γ, x:b′) c) in

if e = 2 then raise error else Πx:d.e
| b c -> let d=(deduce Γ c) in match (deduce Γ b) with

Πx:d.f -> (nf f{x 7→c})
| -> raise error

| C(a1, . . . , an) -> let s1=(deduce Γ a1) in . . . let sn=(deduce Γ an) in
if (type C)=s1→ . . .→sn→s then s else raise error

| f(a1, . . . , an) -> let s1=(deduce Γ a1) in . . . let sn=(deduce Γ an) in
if (type f)=s1→ . . .→sn→s then s else raise error

Lemma 7.2 (deduce properties)
(Termination) deduce terminates.
(Normality) If deduce does not raise an error then its result term is in normal form.
(Correction) Given a valid environment Γ, if (deduce Γ a) does not raise an error but returns a
term b then Γ ` a :b.

(Completeness) If Γ ` a :b then (deduce Γ a) does not raise an error but returns the normal form
of b.

Proof.
· Termination: the recursive calls are done with a strict subterm of a as second argument.
· Normality: by induction on the structure of a.
· Correction: idem.
· Completeness: by induction on the structure of the derivation of Γ ` a :b.

3

Definition 7.3 (Environment validity algorithm) We define hereafter a recursive function called
is valid which takes an environment as argument and returns a boolean value. Its goal is to check
whether the environment is valid or not.

letrec is valid Γ =
try match Γ with

nil -> true
| Γ′, x:a -> (is valid Γ′) and (deduce Γ′ a) ∈ {?,2}

with error -> false

27

Lemma 7.4 (is valid properties)
(Termination) is valid terminates.
(Correctness) If (is valid Γ) returns true then Γ is a valid environment, otherwise it is not.

Proof.
· Termination: the recursive call is done on a strictly smaller environment.
· Correctness: by induction on the environment length.

3

Definition 7.5 (Type-checking algorithm) We define hereafter a function called type check which
takes an environment Γ and two terms a, b as arguments and returns a boolean value. Its goal is to check
whether Γ ` a :b is a valid judgement.

let type check Γ a b =
try (is valid Γ) and (deduce Γ a) = (nf b)
with error -> false

Lemma 7.6 (type check correctness) Given an environment Γ and two terms a, b, if (type check Γ
a b) returns true then Γ ` a :b is a valid judgement, otherwise it is not.

Proof. If (is valid Γ) returns false then, by correctness, Γ is not a valid environment and Γ ` a :b is not a

valid judgement. If (is valid Γ) returns true then, by correctness, Γ is a valid environment. If (deduce Γ a)

raise an error then, by completeness, a is not typable in Γ and Γ ` a : b is not a valid judgement. If (deduce Γ

a) does not raise an error but returns a term b′ in normal form then, by correctness, Γ ` a : b′. If Γ ` a : b is a

valid judgement then, by type uniqueness, b�-* Γb
′. Then, by confluence, the normal form of b is b′. Hence, if the

normal form of b is b′ then, by conversion, Γ ` a :b is a valid judgement, otherwise it is not. 3

Theorem 7.7 (Type-checking decidability) If the conditions for the strong normalization and for
the confluence are satisfied (Theorem 6.5 on page 26) then type-checking is decidable.

Proof. Termination and correctness of type check. 3

8 Rule admissibility

The aim of this section is to study the decidability of the admissibility conditions for rewrite rules
(Definition 2.17 on page 5). The equality used in the algorithms is the α-equivalence. In practice, this is
avoided by using De Bruijn’s terms [dB72].

Algorithms are written in a Caml-Light-like syntax [LM92].
nf denotes a function that takes a term as argument and returns its βR-normal form.
type denotes a function that takes a function symbol or a constructor as argument and returns its

algebraic type.
result type denotes a function that takes a function symbol or a constructor as argument and returns

its result type.
mgu denotes a function that takes a list of environments as argument and computes, if it exists, their

most general unifier by computing that of the types of the variables shared by the environments, otherwise
it raises an error.

gen var denotes a function that returns a variable not already used.

8.1 Admissible rule terms

It is well known that terms of the simply typed λ-calculus have extended algebraic principal types and
environments [Bar93] (see Definition 8.4 on the next page) that can be automatically infered. Since rule
terms are simply-typed λ-terms, we will use this property to verify the admissibility conditions.

To prove the well-typedness condition, we need the following algebraic stripping property to be valid:
given an algebraic type s, if Γ ` a b : s then there exists an algebraic type t such that Γ ` a : t→ s and
Γ ` b : t. Hence, we define hereafter a class of rule terms that enjoys this property.

28

Definition 8.1 (Admissible rule terms) A rule term is admissible if it is in β-normal form and con-
tains no subterm of the form x ~d where one of the terms ~d is of the form λ~z:~s.y ~e and x and y are free
variables.

Note that any subterm of an admissible rule term is also admissible. Hence, we can reason by induction
on its (β-normal form) structure.

Lemma 8.2 (Algebraic stripping) If a b is an admissible rule term then there exists an algebraic type
t such that, for any environment Γ and algebraic type s, Γ ` a b :s implies Γ ` b : t and Γ ` a : t→s.

Proof. By stripping, Γ ` a : Πx:d.e, Γ ` b :d and s�-* Γe{x 7→ b}. Let us prove the property by induction on

the rule term structure of a. The case a = C(~u) is not possible since constructors have sorts as result types. The

case a = λx:t.u is not possible either since a b is in β-normal form. If a = f(~u) then, by stripping, Πx:d.e�-* Γs
′

where s′ is the output type of f . Hence, s′ = t→ t′ and, by product decomposition, d�-* Γt. If a = x or a = u v

then a b = w~b where w is not an application. If w = x then none of the terms ~b is of the form λ~z:~s.y ~e. Hence,

they have a type Γ-equivalent to an algebraic type ti independent of Γ. If w = f(~u) then b has an algebraic type

independent of Γ. 3

Lemma 8.3 (Decidability of the admissibility of a rule term) It is decidable whether a rule term
is admissible or not.

Proof. Trivial. 3

8.2 Decidability of well-typedness

Definition 8.4 (Principal type and environment) Given a rule term a, a pair (Γ, s) made of an
(extended) algebraic environment and an (extended) algebraic type is a principal (extended) algebraic
type and environment of a if and only if Γ ` a :s and, for any other (extended) algebraic pair (Γ′, s′) such
that Γ′ ` a :s′, there exists a substitution θ such that s′ = sθ and Γ′ = Γθ.

Definition 8.5 (Type inference algorithm) We define hereafter a recursive function called infer
which takes a rule term a as argument. Its goal is to compute an extended algebraic environment Γ
and an extended algebraic term b, if they exist, such that Γ2,Γ ` a : b is a valid judgement, where
dom(Γ2) = FV (Γ) ∩ Var2 and Γ2(α) = ? for any α ∈ dom(Γ2).

letrec infer a =
match a with

x -> let α=(gen var) in (x:α,α)
| C(a1, . . . , an) -> let (Γ1,t1)=(infer a1) in . . . let (Γn,tn)=(infer an) in

let x=(gen var) in let θ=(mgu Γ1 . . . Γn x:(type C) x: t1→ . . .→ tn→(result type C)) in
(Γ1θ ∪ . . . ∪ Γnθ, (result type C))

| f(a1, . . . , an) -> let (Γ1,t1)=(infer a1) in . . . let (Γn,tn)=(infer an) in
let x=(gen var) in let θ=(mgu Γ1 . . . Γn x:(type f) x: t1→ . . .→ tn→(result type f)) in

(Γ1θ ∪ . . . ∪ Γnθ, (result type f))
| λx:s.b -> let (Γ,t)=(infer b) in

let θ=(mgu x:s Γ) in (Γθ \ x:s,s→ tθ)
| b c -> let (Γ1,t1)=(infer b) in let (Γ2,t2)=(infer c) in

let θ=(mgu Γ1 Γ2) in let α=(gen var) in let θ′=(mgu x:t1θ x:t2θ→α) in
(Γ1θθ

′ ∪ Γ2θθ
′, αθ′)

Lemma 8.6 (infer properties)
(Termination) infer terminates.
(Minimality) If (infer a) does not raise an error but returns a pair (Γ, s) then dom(Γ) = FV (a).
(Algebraicity) If (infer a) does not raise an error but returns a pair (Γ, s) then Γ and s are extended
algebraic.

(Correctness) If (infer a) does not raise an error but returns a pair (Γ, s) then Γ2,Γ ` a :s.

Proof.

29

· Termination: The recursive calls are done on strict subterms of a.
· Minimality: By induction on the rule term structure of a.
· Algebraicity: By induction on the structure of a. If Γ1 and Γ2 are extended algebraic environments and
θ =(mgu Γ1 Γ2) then θ is also extended algebraic.
· Correctness: By induction on the structure of a. The cases x, C(~b) and f(~b) are trivial.

· a = λx:s.b: By induction hypothesis, Γ2,Γ ` b : t. Let θ be the most general unifier of Γ and x:s. Then
Γθ2,Γθ ` b : tθ. Let Γ2 = Γθ \ x:s. Then Γ2

2 ,Γ2 ` a :s→ tθ.
· a = b c: By induction hypothesis, Γ2

1 ,Γ1 ` b : t1 and Γ2
2 ,Γ2 ` c : t2. Let θ be the most general

unifier of Γ1 and Γ2 and Γ3 = Γ1θ ∪ Γ2θ. Then, by weakening and substitution, Γ2
3 ,Γ3 ` b : t1θ and

Γ2
3 ,Γ3 ` c : t2θ. If t1θ = t2θ→s then Γ2

3 ,Γ3 ` a :s. If t1θ = α then let Γ4 = Γ3{α 7→ (t2θ→β)}. Then
Γ2

4 ,Γ4 ` a :β.
3

Theorem 8.7 (infer Completeness) Given an admissible rule term a, an extended algebraic envi-
ronment Γ and an extended algebraic type s, if Γ ` a : s is a valid judgement then (infer a) does not
raise an error but returns a pair (Γ′, s′) such that there exists a substitution σ verifying s′σ = s and
Γ′σ = Γ|FV (a).

Proof. By induction on the structure of a.
· a = x:

By stripping, s�-* Γt such that x:t ∈ Γ. By Γ-consistence of extended algebraic types, s = t. (infer a)
returns (x:α, α). Hence it suffices to take σ = {α 7→s}: ασ = s and (x:α)σ = x:s = Γ|FV (a).
· a = C(a1, . . . , an), τ(C) = s1→ . . .→sn→s′:

By stripping, s�-* Γs
′ and Γ ` ai :si (1 ≤ i ≤ n). By Γ-consistence of extended algebraic types, s = s′. By

induction hypothesis, (infer ai) returns a pair (Γi, ti) such that there exists a substitution σi verifying
tiσi = si and Γiσi = Γ|FV (ai). By definition of gen var, the substitutions σi have disjoint domains. So let
θ be the substitution such that dom(θ) =

U
i∈{1...n} dom(σi) and θ|dom(σi) = σi. If x is a variable shared

by Γ1 and Γ2 then Γ1(x)θ = Γ(x) = Γ2(x)θ. Furthermore tiθ = si. Hence the environments Γ1, . . . ,Γn, x:
τ(C), x:t1→ . . .→ tn→s are unifiable. Since dom(θ) = FV (t1→ . . .→ tn→s), (t1→ . . .→ tn→s)θ = τ(C)
and FV (τ(C)) = ∅, their most general unifier is θ itself. Hence (infer a) returns (Γ|FV (a), s) and it suffices
to take the identity for σ.
· a = f(a1, . . . , an), f ∈ Fnt , t = s1→ . . .→sn→s′:

Idem.
· a = λx:t.b:

By stripping, s�-* ΓΠx :t1.t2 and Γ, x :t1 ` b : t2. Hence s = s1 → s2 such that s1
�-*

Γt1 and s2
�-*

Γt2.
By Γ-consistence of extended algebraic types, s1 = t1. By conversion, Γ, x:t1 ` b : s2 which is extended
algebraic. By induction hypothesis, (infer b) returns a pair (Γ′, s′2) such that there exists a substitution
σ′ verifying s′2σ

′ = s2 and Γ′σ′ = (Γ, x:s1)|FV (b). If x ∈ FV (b) then Γ′(x)σ′ = s1. Hence Γ′ and x:s1 are
unifiable. Let θ be their most general unifier. Then there exist a substitution σ such that σ′ = θσ. (infer

a) returns (Γ′θ \x:s1, s1→s′2θ). We verify that σ satisfies the desired properties: (s1→s′2θ)σ = s1→s2 = s
and (Γ′θ \ x:s1)σ = (Γ, x:s1)|FV (b) \ x:s1 = Γ|FV (a).
· a = b c:

By algebraic stripping, there exists an extended algebraic type t such that Γ ` b : t→ s and Γ ` c : t. By
induction hypothesis, (infer b) returns a pair (Γ1, t1) such that there exists a substitution σ1 verifying
dom(σ1) = FV (t1), t1σ1 = t→s and Γ1σ1 = Γ|FV (b). (infer c) returns a pair (Γ2, t2) such that there exists
a substitution σ2 verifying dom(σ2) = FV (t2), t2σ2 = t and Γ2σ2 = Γ|FV (c). Let σ′ be the substitution
such that dom(σ′) = dom(σ1)

U
dom(σ2) and σ′|dom(σi) = σi (i ∈ {1, 2}). If x ∈ dom(Γ1) ∩ dom(Γ2) then

Γ1(x)σ′ = Γ(x) = Γ2(x)σ′. Hence Γ1 and Γ2 are unifiable. Let θ be their most general unifier. Then there
exists a substitution σ′′ such that σ′ = θσ′′. t1θσ

′′ = t→ s and (t2θ→ α)σ′′ = t→ α. Hence t1θ and
t2θ→α are unifiable. Let θ′ be their most general unifier. Then there exists a substitution σ′′ such that
σ′′{α 7→s} = θ′σ. We verify that σ satisfies the desired properties: αθ′σ = s and (Γ1θθ

′∪Γ2θθ
′)σ = Γ|FV (a).

3

Theorem 8.8 (Decidability of well-typedness) If a is a rule term then it is decidable whether it is
typable or not.

Proof. Termination, correctness and completeness of infer. 3

30

8.3 Decidability of algebraicity

Lemma 8.9 (Environment algebraicity) Given an admissible rule term a, an environment Γ and an
(extended) algebraic type s, if Γ ` a :s then βhnf(Γ|FV (a)) is (extended) algebraic.

Proof. By induction on the rule term structure of a. If a = x then s�-* Γb such that x:b ∈ Γ. By property of

(extended) algebraic types, βhnf(b) = s. If a = λx:t.b then s = t→ t′ and Γ, x:t ` b : t′. By induction hypothesis,

βwhnf((Γ, x:t)|FV (a)∪{x}) is (extended) algebraic. Hence βhnf(Γ|FV (a)) is (extended) algebraic. If a = C(~b) or

a = f(~b) then, by induction hypothesis, βhnf(Γ|FV (bi)) (1 ≤ i ≤ |~b|) is (extended) algebraic. Hence βhnf(Γ|FV (a))

is (extended) algebraic. If a = b c then, since a is admissible, by algebraic stripping, Γ ` b : t→ s and Γ ` c : t

for some algebraic type t. By induction hypothesis, βhnf(Γ|FV (b)) and βwhnf(Γ|FV (c)) are (extended) algebraic.

Hence βwhnf(Γ|FV (a)) is (extended) algebraic. 3

In other words, the free variables of an admissible rule term whose type is (extended) algebraic are
constrained to have an (extended) algebraic type.

Theorem 8.10 (Decidability of algebraicity) Any admissible rule term headed by a function symbol
satisfies the algebraicity condition.

Proof. As it is headed by a function symbol, it has an algebraic type. By the algebraicity lemma, any

environment in which it has that type is equivalent to an algebraic environment. By completeness of the inference,

this can only be its infered environment. 3

8.4 Decidability of type-preservation

Definition 8.11 (Type-deduction algorithm) We define hereafter a recursive function called deduce rt
which takes an extended algebraic environment Γ and a rule term a as arguments. Its goal is to compute
the extended algebraic type of a in the environment Γ, if such a type exists, or to raise an exception
called error.

letrec deduce rt Γ a =
match a with

| x -> if x ∈ Γ then Γ(x) else raise error
| λx:t.b -> let t′=(deduce rt (Γ, x:t) b) in t→ t′

| b c -> let t=(deduce rt Γ c) in match (deduce rt Γ b) with
t→ t′ -> t′

| -> raise error
| C(a1, . . . , an) -> let s1=(deduce rt Γ a1) in . . . let sn=(deduce rt Γ an) in

if (type C)=s1→ . . .→sn→s then s else raise error
| f(a1, . . . , an) -> let s1=(deduce rt Γ a1) in . . . let sn=(deduce rt Γ an) in

if (type f)=s1→ . . .→sn→s then s else raise error

Lemma 8.12 (deduce rt properties)
(Termination) deduce rt terminates.
(Algebraicity) If (deduce rt Γ) does not raise an error but returns a term s then s is an extended
algebraic type.

(Correctness) If (deduce rt Γ a) does not raise an error but returns a term s then Γ ` a :s.
(Completeness) Given an extended algebraic type s, if Γ ` a : s then (deduce rt Γ a) does not
raise an error but returns s.

Proof.
· Termination: the recursive calls are done with a strict subterm of a as second argument.
· Algebraicity: by induction on the structure of a.
· Correctness: idem.
· Completeness: idem.

3

31

Definition 8.13 (Type-preservation algorithm) We define hereafter a function called preserv which
takes two rule terms l and r as arguments and returns a boolean value. Its goal is to check whether the
rule l - r satisfies the type-preservation condition.

let preserv l r =
try let (Γ,s)=(infer l) in

try (deduce rt Γ r)=s
with error -> false

with error -> true

Lemma 8.14 (preserv correctness) Given an admissible rule term l headed by a function symbol
and a rule term r, if (preserv l r) returns true then l - r satisfies the type-preservation condition,
otherwise it does not.

Proof. Let s be the result type of the function symbol by which l is headed. If (infer l) raises an error
then, by completeness, l is not typable in any extended algebraic environment. By the environment algebraicity
lemma, l is not typable in any environment. Hence, l - r trivially satisfies the type-preservation condition since
there is no environment Γ such that Γ ` l :s.

Suppose that (infer l) does not raise an error but returns a pair (Γ, s). Let Γ′ be an environment such
that Γ′ ` l :s. Since l is admissible, by the environment algebraicity lemma, Γ′|FV (l) is reducible to an algebraic
environment Γ′′. Hence, by completeness of infer, Γ is algebraic and Γ′′ = Γ.

If (deduce rt Γ r) does not raise an error but returns an algebraic type t then, by correctness, Γ ` r : t.
By weakening and subject reduction, Γ′ ` r : t. If Γ′ ` r : s then, by type uniqueness and Γ-consistence of

algebraic types, t = s. If t = s then Γ′ ` r : s is a valid judgement and l - r satisfies the type-preservation
condition. If t 6= s then Γ′ /̀ r :s and l - r does not satisfy the type-preservation condition.

If (deduce rt Γ r) raises an error then r is not typable in Γ. Hence, r is not typable in Γ′ and l - r does

not satisfy the type-preservation condition. 3

Theorem 8.15 (Decidability of type-preservation) If l - r is a rule made of an admissible rule
term l then it is decidable whether it satisfies the type-preservation condition.

Proof. Termination and correctness of preserv. 3

9 Conclusion

We have extended the calculus of constructions with inductive sorts, first-order and higher-order rewrite
rules. We have proved that the combined calculus enjoys the subject reduction property, is strongly
normalizable, confluent, logically sound and that type-checking is decidable.

This work has been based on the work of Barbanera, Fernández and Geuvers [BFG94], and on the
recent work of Jouannaud and Okada on positive inductive sorts [JO97b].

Compared to [BFG94], we provide inductive types, a more general schema for higher-order definitions,
abstractions and applied variables in both sides of the rewrite rules. We have clarified several notions
introduced in this paper, namely: some aspects of the subject reduction proof; the proof of unicity for
algebraic types; the notion of “cube-embeddability”, called rule admissibility in our paper; its decidability
proof which applies to a much larger class of definitions; a much simpler proof of strong normalization
inspired from [Geu95].

Compared to [JO97b], we have again clarified several key-notions: the notion of critical subterm and of
an admissible recursive call interpretation; the expression of the general schema; and the reducibility proof
of the higher-order function symbols. Besides, all these notions have been formulated in the context of a
much richer type theory, the calculus of constructions, instead of a simply-typed λ-calculus with inductive
types, and our strong normalization proof is highly modular.

We believe that it should not be too hard to add polymorphic rewriting, to extend the general
schema to catch recursors for positive inductive types, although there are few practical examples where
this is really needed. This would provide with more inductive types than in the Calculus of Inductive
Constructions [Wer94].

On the other hand, we have not yet considered the case of dependent inductive sorts, strong elim-
ination, subsorts and quotient types, conditional rewriting, universes and η-reductions. This is left for
future work.

32

References

[Bar84] H. Barendregt. The Lambda Calculus: Its Syntax and Semantics (2nd ed.). North-Holland,
1984.

[Bar93] H. Barendregt. Handbook of Logic in Computer Science, volume 2, chapter 2. Oxford Univer-
sity Press, 1993.

[BBC+98] B. Barras, S. Boutin, C. Cornes, J. Courant, D. Delahaye, D. de Rauglaudre, J.-C. Filliâtre,
E. Gimnez, H. Herbelin, G. Huet, P. Loiseleur, C. Muñoz, C. Murthy, C. Parent, C. Paulin-
Mohring, A. Säıbi, and B. Werner. The Coq Proof Assistant Reference Manual Version 6.2.
INRIA-Rocquencourt-CNRS-Universit Paris Sud- ENS Lyon, May 1998.

[BFG94] F. Barbanera, M. Fernández, and H. Geuvers. Modularity of strong normalization and con-
fluence in the algebraic-λ-cube. In Proceedings, Ninth Annual IEEE Symposium on Logic
in Computer Science, pages 406–415, Paris, France, 4–7 July 1994. IEEE Computer Society
Press.

[BFG97] F. Barbanera, M. Fernández, and H. Geuvers. Modularity of strong normalization in the
algebraic-λ-cube. Journal of Functional Programming, 7(6):613–660, November 1997.

[CH88] T. Coquand and G. Huet. The calculus of constructions. Information and Computation,
76:96–120, 1988.

[CPM90] Th. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin-Löf and
G. Mints, editors, Proceedings of Colog’88, LNCS 417. Springer-Verlag, 1990.

[dB72] N. G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for automatic for-
mula manipulation with application to the Church-Rosser theorem. Indag. Math., 34(5):381–
392, 1972.

[DJ90] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 243–309. North-Holland, 1990.

[Gal90] J. Gallier. On Girard’s “Candidats de Reductibilité”. In P.-G. Odifreddi, editor, Logic and
Computer Science. North Holland, 1990.

[Geu95] H. Geuvers. A short and flexible proof of strong normalization for the calculus of constructions.
In P. Dybjer, B. Nordström, and J. Smith, editors, Selected Papers 2nd Intl. Workshop on
Types for Proofs and Programs, TYPES’94, B̊astad, Sweden, 6–10 June 1994, volume 996 of
Lecture Notes in Computer Science, pages 14–38. Springer-Verlag, Berlin, 1995.

[GLT88] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge Tracts in Theoretical
Computer Science 7. Cambridge University Press, 1988.

[GN91] J. H. Geuvers and M.-J. Nederhof. A modular proof of strong normalization for the calculus
of constructions. Journal of Functional Programming, 1(2):155–189, 1991.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley,
editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pages 479–490. Academic Press, Inc., New York, N.Y., 1980.

[Hue80] Gérard Huet. Confluent reductions: Abstract properties and applications to term-rewriting
systems. Journal of the ACM, 27(4):797–821, October 1980.

[JO97a] J.-P. Jouannaud and M. Okada. Abstract data type systems. Theoretical Computer Science,
173(2):349–391, February 1997.

[JO97b] J.-P. Jouannaud and M. Okada. Inductive data type systems: Strong normalization and all
that. Unpublished, 1997.

[LM92] X. Leroy and M. Mauny. The Caml-Light Reference Manual. INRIA, 1992.

33

[New42] M. H. A. Newman. On theories with A combinatorial definition of equivalence. In Annals of
Math, volume 43, pages 223–243, 1942.

[Par93] M. Parigot. Strong normalization for second order classical natural deduction. In Proceedings
8th Annual IEEE Symp. on Logic in Computer Science, LICS’93, Montreal, Canada, 19–23
June 1993, pages 39–46. IEEE Computer Society Press, 1993.

[PM93] C. Paulin-Mohring. Inductive definitions in the system coq - rules and properties. In M. Bezem
and J. F. Groote, editors, LNCS 664. Springer-Verlag, 1993.

[Tai67] W. W. Tait. Intensional interpretations of functionals of finite type I. Journal of Symbolic
Logic, 32(2):198–212, June 1967.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific J.Math., 5:285–
309, 1955.

[Wer94] B. Werner. Une Théorie des Constructions Inductives. PhD thesis, Université Paris VII, 1994.

34

	Introduction
	The Calculus of Algebraic and Inductive Constructions
	Meta-theory
	Subject reduction and -consistence of the extended algebraic types
	Strong normalization
	Interpretation of the types
	Strong normalization proof
	Reducibility of first-order function symbols
	Reducibility of higher-order function symbols
	Recursive call interpretation
	Strong normalization of CAIC
	Confluence
	Type-checking decidability
	Rule admissibility
	Admissible rule terms
	Decidability of well-typedness
	Decidability of algebraicity
	Decidability of type-preservation

	Conclusion

