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These notes have been written to complement the study of the very nice
book of Gilles Dowek on “Proofs and Algorithms - An Introduction to Logic
and Computability” [2] by Ying Jiang’s group of students at the Institute of
Software of the Chinese Academy of Sciences (ISCAS) that met more or less
every Tuesday from May to August 2012.

It introduces the notion of directed-complete partial order (dCPO) that is
the basis of domain theory [1] and topology.

1 Directed-complete partial orders

Let ≤ be an ordering relation on a set E.
The first chapter of Dowek’s book starts by introducing the following notions:

Definition 1 (Limit, complete ordering, continuity) An element l ∈ E is
the limit of an increasing sequence u0 ≤ u1 ≤ . . . if l is the least upper bound
(lub) of the set {u0, u1, . . .}.

The ordering ≤ is weakly complete if every increasing sequence has a limit.
It is strongly complete if every subset of E has a least upper bound.

A function f : E → E is increasing if for all x, y ∈ E, x ≤ y ⇒ f(x) ≤ f(y).
In a weakly complete ordering ≤, a function f : E → E is continuous if

it is increasing and if, for every increasing sequence (ui)i≥0, lub{f(ui)}i≥0 =
f(lub{ui}i≥0).

A set E equipped with an ordering relation ≤ is also called a partially ordered
set or poset. In a totally ordered set, every two elements are comparable.

An increasing function is more usually called monotone, monotonic or iso-
tone (it is a morphism in the category of posets).

An increasing sequence u0, u1, . . . is also called an ω-chain (ω is the first
infinite ordinal), a chain being a non-empty totally ordered set. Because of this
restriction to ω-chains, Dowek’s notions of weak completeness and continuity
are generally called ω-completeness (ωCPO) and ω-continuity.

Moreover, a strongly complete ordering is a complete lattice:

1



Definition 2 (Lattice) A lattice is a poset (E,≤) such that every two elements
have a least upper bound (lub) and a greatest lower bound (glb). A lattice is
complete if every subset of E has a lub and a glb.

An easy induction shows that, in a lattice, every non-empty finite subset of
E has a lub and a glb. It is complete if every empty and infinite subset has a
lub and a glb.

Lemma 3 A strongly complete ordering is a complete lattice.

Proof. The fact that every subset has a lub follows from the definition. For
the glb, take glb(A) = lub{x ∈ E | x ≤ A}. This is Proposition 1.2 in Dowek’s
book. �

Note that, if they exist, lub ∅ = glbE is the smallest element of E and
lubE = glb ∅ the greatest.

A more abstract notion, not using sequences, is the one of directed-complete
partial order (dCPO). This is the basis of domain theory used in programming
languages semantics. We refer to [1] for more details. Domain theory has been
introduced by Scott [5, 6, 8, 7].

Definition 4 (Directed-complete poset (dCPO)) A directed setD is a non-
empty set such that every two elements has an upper bound (in D). A poset
is directed-complete (dCPO) if every directed subset has a lub. In a dCPO, a
function f : E → E is d-continuous (or Scott-continuous) if f is monotone and,
for every directed subset D, lubf(D) = f(lubD).

Note that, in the definition of d-continuity, lubf(D) exists since, by monotony
of f , f(D) is directed.

By an easy induction, one can check that a directed set is a poset having
an upper bound for every finite subset (including the empty subset since it is
non-empty).

A chain is a directed set. Hence, every dCPO is a chain-complete poset
(i.e. every chain has a lub) and thus an ωCPO. Conversely, using the axiom of
choice, every chain-complete poset is a non-empty (or pointed) dCPO [4].

In Dowek’s book, it is proved (Proposition 1.1, “1st fixed-point theorem”)
that, in an ωCPO, every ω-continuous function f : E → E has a least fixpoint
(lfp), i.e. there is x such that f(x) = x. A similar theorem holds in dCPOs:

Lemma 5 In a dCPO, every d-continuous function f : E → E has a lfp.

In Dowek’s book, it is also proved (Proposition 1.3, “2nd fixed-point theo-
rem”) that, in a complete lattice, every monotone function f : E → E has a
lfp. This theorem is due to Tarski [10]. The full Tarski’s theorem in fact says
that the set of all the fixpoints of f is itself a complete lattice. And it can be
extended to chain-complete posets [3].
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Lemma 6 In a chain-complete poset, the set of fixpoints of a monotone function
f : E → E is chain-complete. In particular, f has a lfp.

In fact, this property of monotone functions is a charateristic of chain-
complete posets: if every monotone map f : E → E has a least fixpoint, then
E is chain-complete [3].

2 Topology

In Dowek’s book and in the previous section, the notion of limit of a chain
or directed set is defined as its lub, and a monotone function f : E → E is
continuous if it permutes with lub or if, for all directed subset D, f(lubD) ≤
lubf(D) (since we always have lubf(D) ≤ f(lubD) by monotony of f).

However, in mathematics, there exists a more abstract notion of continuity
based on the notion of topology. Let ℘(E) be the set of all the subsets of E.

Definition 7 (Topology) A topology τ on a set E is a set of subsets of E
(τ ⊆ ℘(E)), called opens, such that:

• ∅ and E are opens: ∅ ∈ τ and E ∈ τ ;

• τ is closed under arbitrary unions: if X ⊆ τ , then
⋃
X ∈ τ ;

• τ is closed under non-empty finite intersections1: if X ⊆ τ and X is finite,
then

⋂
X ∈ τ .

A function f : E → E is τ -continuous if the inverse image of an open is an
open: forall U ∈ τ , f−1(U) ∈ τ .

Alternative formulation using families:

• τ is closed under arbitrary unions: if (Ui)i∈I is an arbitrary family of opens,
then

⋃
i∈I Ui is an open;

• τ is closed under non-empty finite intersections: if (Ui)1≤i≤n is a non-empty
finite family of opens (i.e. n ≥ 1), then

⋂
i≤i≤n Ui is an open.

For instance, the standard notion of continuity on the real line R corresponds
to the following topology: U ⊆ R is open if, for all x ∈ U , there is ε > 0 such
that ]x− ε, x+ ε[ ⊆ U . Hence, ]0, 1[ is open, but [0, 1] is not. Closure by

finite intersections only is important: for all i ≥ 1, ] −
1

i
,+

1

i
[ is open, but⋂

i≥1]−
1

i
,+

1

i
[= {0} is not open.

We will see that the notion of d-continuity corresponds to the following
topology:

1Since τ has a greatest element E, one can define
⋂

∅ as E and say that τ is closed under
finite intersection (empty or not).
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Definition 8 (Scott topology) Let σ be the set of subsets U such that:

• U is upper-closed: if x ∈ U and x ≤ y, then y ∈ U ;

• U is accessible by directed lubs: for all directed subset D with lubD ∈ U , we
have D ∩ U 6= ∅.

We first check that σ is indeed a topology:

Lemma 9 σ is a topology.

Proof.

• One can easily check that ∅ and E are upper-closed and accessible by directed
lubs.

• Let (Ui) be a family of opens. Then, one can easily check that
⋃

i∈I Ui is
upper-closed and accessible by directed lubs since each Ui do so.

• Let (Ui)1≤i≤n be a non-empty finite family of opens. Then, one can easily
check that U =

⋂
1≤i≤n is upper-closed. Let now D be a directed set such

that lubD ∈ U . Then, for every i ∈ {1, . . . , n}, there is xi ∈ D ∩ Ui. Since
D is directed, x = lub{x1, . . . , xn} ∈ D. Since every Ui is upper-closed, we
have x ∈

⋂
1≤i≤n Ui. �

We now prove that d-continuity is equivalent to σ-continuity:

Lemma 10 A function f : E → E is d-continuous iff it is σ-continuous.

Proof. We first prove that d-continuity implies σ-continuity. Let U ∈ σ.
We have to prove that f−1(U) ∈ σ.

• f−1(U) is upper-closed: if x ∈ f−1(U) and x ≤ y then f(x) ∈ U and, by
monotony of f , f(y) ∈ U , i.e. y ∈ f−1(U).

• f−1(U) is accessible by directed lubs: let D be a directed subset such that
lubD ∈ f−1(U). Then, f(lubD) ∈ U . By d-continuity, f(lubD) = lubf(D).
Since U is open, f(D) ∩ U 6= ∅. Therefore, D ∩ f−1(U) 6= ∅.

We now prove that σ-continuity implies d-continuity. To this end, first
remark that ]a,+∞[= {x ∈ E | x 6≤ a} is an open:

• ]a,+∞[ is upper-closed: if x 6≤ a and x ≤ y, then y 6≤ a. Otherwise, by
transitivity, x ≤ a.

• ]a,+∞[ is accessible by directed lubs: if D is directed and lubD 6≤ a, then
there is d ∈ D such that d 6≤ a. Otherwise, D ≤ a and lubD ≤ a, which is
not possible.

We now prove that f is d-continuous:
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• f is monotone: let x and y such that x ≤ y. We have to prove that f(x) ≤
f(y). If f(x) 6≤ f(y), then f(x) ∈ U =]f(y),+∞[ and x ∈ f−1(U). Since f is
d-continuous and U is open, f−1(U) is open and, in particular, upper-closed.
Thus, y ∈ f−1(U) and f(y) 6≤ f(y), which is not possible.

• For all directed subset D, f(lubD) ≤ lubf(D): if f(lubD) 6≤ lubf(D), then
f(lubD) ∈ U =]lubf(D),+∞[ and lubD ∈ f−1(U). Since f is d-continuous
and U is open, f−1(U) is open and, in particular, accessible by directed lubs.
Thus, there is d ∈ D∩f−1(U). Hence, f(d) ∈ f(D)∩U and f(d) 6≤ lubf(D),
which is not possible. �

A subset F of E is closed if its complement in E, F −E, is open. The set of
closed sets has the following closure properties, dual to those of open sets:

• ∅ and E are closed sets2;

• the set of closed sets is closed under finite unions: if X is a finite set of closed
sets, then

⋃
X is a closed set;

• the set of closed sets is closed under arbitrary intersections: if X is a set of
closed sets, then

⋂
X is a closed set.

Alternatively, using families:

• the set of closed sets is closed under finite unions: if (Fi)1≤i≤n is a finite
family of closed sets, then

⋃
1≤i≤n Fi is a closed set;

• the set of closed sets is closed under arbitrary intersections: if (Fi)i∈I is an
arbitrary family of closed sets, then

⋂
i∈I Fi is a closed set.

Finally, note that a function f is τ -continuous if, for all closed set F , f−1(F )
is closed.

References

[1] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay,
and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,
volume 3, pages 1–168. Clarendon Press, 1994. Corrected and expanded
version available on A. Jung’s web page.

[2] G. Dowek. Proofs and Algorithms. An introduction to Logic and Com-
putability. Undergraduate Topics in Computer Science. Springer, 2011.

[3] G. Markowsky. Chain-complete p.o. sets and directed sets with applica-
tions. Algebra Universalis, 6:53–68, 1976.

2Sets that are both open and closed are sometimes called “clopen”: ∅ are E are clopen.

5



[4] J. Mayer-Kalkschmidt and E. F. Steiner. Some theorems in set theory and
applications in the ideal theory of partially ordered sets. Duke Math. J.,
31:287–289, 1964.

[5] D. S. Scott. A type theoretic alternative to ISWIM, CUCH, OWHY.
Manuscript. Published in [9], 1969.

[6] D. S. Scott. Continuous lattices. In E. Lawvere, editor, Toposes, Algebraic
Geometry and Logic, number 274 in Lecture Notes in Mathematics, pages
97–136. Springer, 1972.

[7] D. S. Scott. Domains for denotational semantics. In Proceedings of the
9th International Colloquium on Automata, Languages and Programming,
Lecture Notes in Computer Science 140, 1982.

[8] D. S. Scott. Some ordered sets in computer science. In I. Rival, editor,
Ordered sets, pages 677–718. D. Reidel, 1982.

[9] D. S. Scott. A type theoretic alternative to ISWIM, CUCH, OWHY. The-
oretical Computer Science, 121(411-440), 1993. Reprint of [5].

[10] A. Tarski. A lattice-theoretical fixpoint theorem and its application. Pacific
Journal of Mathematics, 5:285–309, 1955.

6


	Directed-complete partial orders
	Topology

