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These notes gather basic results on cardinal theory and, in particular, the
cofinality of an ordinal and regular cardinals. More material can for instance
be found in [2, 3].

First note that:

Lemma 1 If α and β are two ordinals, α < β and β is a limit ordinal, then
α+ 1 < β.

Proof. Since α < β, we have α+ 1 ≤ β. If α+ 1 ≥ β, then β = α+ 1. But
β is a limit ordinal. Therefore, α+ 1 < β (ordinals are totally ordered). �

1 Monotone and extensive functions on a poset

Definition 2 (Extensive function) A function f : X → X is extensive if, for
all x ∈ X, x ≤ f(x).

Lemma 3 On a well-ordered set, a strictly monotone function is extensive.

Proof. Assume that S = {x ∈ X | x > f(x)} 6= ∅. Then, let a be the
least element of S (X is well ordered). Hence, a > f(a). By strict monotony,
f(a) > f(f(a)). Therefore, f(a) ∈ S and a ≤ f(a). Contradiction. �

Lemma 4 If f is a monotone injection from α to β, then α ≤ β.

Proof. Since α is well ordered, f is extensive. Hence, for all x < α,
x ≤ f(x) < β. If β < α, then β < β. Contradiction. �

2 Order type

We write x ' y if x and y are two isomorphic posets, that is, when there is a
monotone bijection f from x to y such that f−1 is monotone too.

Definition 5 (Order type) The order type of a well-ordered set X, o(X), is
the smallest ordinal isomorphic to X.
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Lemma 6 If α is an ordinal and X ⊆ α, then o(X) ≤ α.

Proof. Since X is a set of ordinals, X is well ordered. Therefore, o(X) is
well defined. Since o(X) ' X and X ⊆ α, there is a monotone injection from
o(X) to α. Therefore, o(X) ≤ α. �

Lemma 7 If f : X → Y is a strictly monotone function between two well-
ordered sets, then o(X) ≤ o(Y ).

Proof. Let g : Y → o(Y ) be a monotone bijection. We have X ' Im(f) '
g[Im(f)] = {g(y) ∈ o(Y ) | y ∈ Im(f)}. Thus, o(X) = o(g[Im(f)]) ≤ o(Y ). �

3 Cofinal and unbounded subsets of a poset

Definition 8 (Cofinal and unbounded subsets) A subset X of an ordered
set Y is cofinal (resp. unbounded) if, for all y ∈ Y , there is x ∈ X such that
y ≤ x (resp. y < x). A function f : X → Y is cofinal (resp. unbounded) if its
image Im(f) is cofinal (resp. unbounded).

Note that every extensive function is cofinal.
Note that an unbounded subset is cofinal but a cofinal subset does not need

to be unbounded.

Lemma 9 If α is an ordinal and X is an unbounded subset of α, then α is a
limit ordinal and supX = α.

Proof. Assume that α = β + 1 for some β. Then, β ∈ α. Since X is
unbounded, there is x ∈ X such that β < x. But, since x ∈ X and X ⊆ α,
x ≤ α = β + 1. Contradiction.

We now prove that supX = α. Since X ⊆ α, X ≤ α. So, supX ≤ α.
Assume now that supX < α. Since X is unbounded, there is x ∈ X such that
supX < x. But, since x ∈ X, x ≤ supX. Contradiction. �

Lemma 10 α is a limit ordinal iff every cofinal subset of α is unbounded.

Proof.

⇒ Let α be a limit ordinal and X be a cofinal subset of α. Assume that X is
bounded, that is, there is β < α such that X ≤ β. Since α is a limit ordinal,
β+ 1 < α. Since X is cofinal, there is x ∈ X such that β+ 1 ≤ x. But x ≤ β.
Contradiction.

⇐ Assume that α is not a limit ordinal. Then α = β + 1 for some β and {β} is
a bounded cofinal subset of α. Contradiction. �
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4 Cofinality of an ordinal

For the cofinality of an ordinal, I found the following definitions:

Definition 11 (Cofinality) Let cfc(α) be the smallest ordinal β such that
there is a cofinal function f : β → α.

If α is a limit ordinal, let cfm(α) be the smallest ordinal β such that there
is a strictly monotone function f : β → α such that sup Im(f) = α.

Let cfo(α) be the smallest order type of a cofinal subset of α.

cfc(α) is well defined since the identity function is cofinal.
cfm(α) is well defined since the identity function is strictly monotone and

satisfies sup Im(idα) = α since α is a limit ordinal.
Note that cfm(α) is defined on limit ordinals only. Indeed, if α = α′ + 1 for

some α′ then, for any f : β → α, sup Im(f) ≤ α′ < α.
cfo(α) is well defined since α is cofinal in α.
It follows that:

Lemma 12 For x ∈ {c,m, o}, cfx(α) ≤ α.

Note that cfc(α+ 1) = cfo(α+ 1) = 1.
We are now going to see that these definitions are however all equivalent on

limit ordinals:

Lemma 13 1. cfc(α) ≤ cfm(α).

2. If α is a limit ordinal, then cfm(α) ≤ cfc(α).

3. cfc(α) ≤ cfo(α).

4. If α is a limit ordinal, then cfo(α) ≤ cfc(α).

Proof.

1. Since every strictly monotone function on an ordinal is extensive and thus
cofinal.

2. Let β = cfc(α) and f : β → α cofinal. By wellfounded recursion, there is g
such that, for all x < β, g(x) = max(f(x), Sg(x) + 1), where Sg(0) = 0 and,
for all x > 0, Sg(x) = supy<x g(y). If y < x, then g(y) < g(x). So, g is
strictly monotone. Now, for all x, f(x) ≤ g(x). Hence, Sf (x) ≤ Sg(x). Since
f is cofinal and α is a limit ordinal, f is unbounded and Sf (β) = α. So,
α ≤ Sg(β). Let now γ be the smallest ordinal x such that α ≤ Sg(x). We
have γ ≤ β. Moreover, for all x < γ, Sg(x) < α. Since α is a limit ordinal,
Sg(x) + 1 < α. And since f(x) < α, we have g(x) < α. Therefore, Sg(γ) = α
and cfm(α) ≤ γ ≤ β = cfc(α).
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3. cfo(α) = o(X) where X is a cofinal subset of α. Let f : o(X) → X be an
isomorphism between o(X) and X, and g : o(X) → α be the function such
that g(x) = f(x). Then, g is cofinal since Im(g) = Im(f) = X and X is
cofinal. Therefore, cfc(α) ≤ cfo(α).

4. Let β = cfc(α) and f : β → α be cofinal. We have seen in (2) that, since α is
a limit ordinal, there are γ ≤ β and g : γ → α strictly monotone and cofinal.
Thus, Im(g) is cofinal and o(Im(g)) = γ. Therefore, cfo(α) ≤ β. �

In the following, when α is a limit ordinal, we write cf(α) to denote any one
of these definitions.

5 Initial ordinals

We write x ∼ y if x and y are two equipotent sets, that is, when there is a
bijection f from x to y.

Definition 14 (Initial ordinal) An ordinal α is initial if it is equipotent to
no smaller ordinals.

Lemma 15 α is initial iff, for all β < α, α cannot be injected into β.

Proof. The ⇐ part is immediate. Assume now that there is β < α and
an injection f : α → β. Then, α ∼ Im(f) ' o(Im(f)) and o(Im(f)) < α since
Im(f) ⊆ β and β < α. �

Lemma 16 An infinite initial ordinal is a limit ordinal.

Proof. If α is infinite, then α + 1 ∼ α. Take f : α + 1 → α such that
f(α) = 0; for all β < ω, f(β) = β + 1; and for all β ∈ [ω, α[, f(β) = β. �

Lemma 17 cfc(α) is initial.

Proof. By definition of β = cfc(α), there is a cofinal function f : β → α.
Assume that β is not initial, that is, there is γ < β and a bijection g : γ → β.
Now, let y ∈ α. Since f is cofinal, there is x ∈ β such that y ≤ f(x). But,
f(x) = (f ◦ g)(g−1(x)). Therefore, f ◦ g : γ → α is cofinal. Contradiction. �

6 Cardinal of a set

Definition 18 (Cardinal) The cardinal of a set X, written |X|, is the smallest
ordinal equipotent to X (requires the axiom of choice if X is not equipped with
a particular well order). An ordinal α is a cardinal if there is some set X such
that α = |X|.

Lemma 19 |X| = α iff α ∼ X and there is no injection from α to β < α.
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Proof.

⇒ Assume that there is an injection f from α to β < α. Then, α ∼ Im(f) '
o(Im(f)) and o(Im(f)) < α since Im(f) ⊆ β < α.

⇐ If there is no injection from α to β < α, then there is no bijection from α to
β < α. �

Lemma 20 For every ordinal α, |α| ≤ α.

Proof. Since α ∼ α. �

Lemma 21 α is a cardinal iff α is initial iff |α| = α.

Proof.

1⇒ 2 Assume that α = |X| for some X. If α is not initial, then there is β < α such
that β ∼ α. Since α = |X| and |X| ∼ X, there is therefore β < |X| such that
β ∼ X. Contradiction.

2⇒ 3 Since α is initial, |α| ≥ α. But, since |α| ≤ α, we have |α| = α.

3⇒ 1 Immediate. �

Hence, initial and cardinal are synonyms.

Lemma 22 1. If f : X → Y is injective, then |X| ≤ |Y |.

2. If f : X → Y is surjective, then |Y | ≤ |X|.

Proof.

1. Since X ∼ |X| and Y ∼ |Y |, there is an injection from |X| to |Y |. Therefore,
|X| ≤ |Y |.

2. Let R be the equivalence relation on X such that xRx′ iff f(x) = f(x′),
and γ : X/R → X be a choice function, that is, γ(x) ∈ x. The function
f/R : X/R → Y mapping the class of x to f(x) is injective. It is also
surjective since f is surjective. The function γ is injective too. Therefore,
the function γ ◦ (f/R)−1 is an injection from Y to X. �

Lemma 23 1. If α ≤ β, then |α| ≤ |β|.

2. If |α| < |β|, then α < |β|.

Proof.

1. Since α ≤ β, there is an injection from α to β.

2. If α ≥ |β|, then |α| ≥ ||β|| = |β|. �

Lemma 24 cf(α) ≤ |α|.
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Proof. Since cf(α) ≤ α and cf(α) is initial, cf(α) = | cf(α)| ≤ |α|. �

Lemma 25 If λ is an infinite cardinal and (κα)α<λ is a family of non-zero
cardinals, then

∑
α<λ κα = max(λ, supα<λ κα).

Proof. Let S =
∑
α<λ κα and κ = supα<λ κα. Since for all α < λ, κα ≤ κ,

we have S ≤
∑
α<λ κ ≤ λκ = max(λ, κ). Now, λ =

∑
α<λ 1 ≤ S since, for all

α < λ, κα 6= 0. And since for all α < λ, κα ≤ S, we have κ ≤ S. �

7 Hartogs ordinal

Definition 26 (Hartogs ordinal) Given a set X, let h(X) be the smallest
ordinal that cannot be injected into X.

The proof of the existence of h(X) is due to Hartogs [1]. Clearly:

Lemma 27 h(X) is initial.

Lemma 28 If α is initial, then h(α) is the least initial ordinal greater than α.

Proof. First, α < h(α). Otherwise, there is an injection from h(α) to
α. Now, assume that β is an initial ordinal such that α < β < h(α). Since
β < h(α), there is an injection from β to α. But, since α < β and β is initial,
there is no injection from β to α. Contradiction. �

Definition 29 Let C be the class of ordinals defined by wellfounded recursion
as follows:

• w0 = ω

• wα+1 = h(ωα)

• wλ = supα<λ ωα if λ = supλ.

Lemma 30 1. ω is strictly monotone and extensive.

2. C is the class of all infinite initial ordinals.

Proof.

1. First, one can easily check that ω is monotone and that, for all α, ωα < ωα+1.
Assume now that α < β and ωα = ωβ . If β = γ + 1, then α ≤ γ and
ωα ≤ ωγ < ωγ+1 = ωα. Contradiction. Assume now that β is a limit ordinal.
Then, α+ 1 < β and ωα < ωα+1 ≤ ωβ = ωα. Contradiction.

6



2. We first prove that every element of C is initial. ω0 = ω is initial. For all
α, ωα+1 is initial. Let now λ be a limit ordinal and assume that, for all
α < λ, ωα is initial. If ωλ is not initial, then there is β < ωλ such that
β ∼ ωλ. Since ωλ = supα<λ ωα, there is α < λ such that β < ωα. Hence,
ωλ ∼ β < ωα ≤ ωλ. Contradiction.

It remains to prove that every infinite initial ordinal belongs to C. Since ω
is extensive, for all α, α ≤ ωα. We now prove that, for all α, for all infinite
initial ordinal β < ωα, there is γ < β such that β = ωγ , by induction on
α. If α = 0, this is immediate since there is no infinite ordinal smaller than
ω0. Assume now that α = α′ + 1. Then, ωα = h(ωα′) and β ≤ ωα′ . If
β < ωα′ then we can conclude by induction hypothesis. Assume finally that
α = supα. Then, there is x < α such that β < ωx and we can conclude by
induction hypothesis. �

Hence, every cardinal is equal to some ωα for some α, and we can study
cardinals by studying C.

A cardinal of the form ωα+1 is called a successor cardinal. A cardinal of the
form ωλ with λ = supλ is called a limit cardinal.

8 Regular ordinals

Definition 31 (Regular ordinal) A infinite cardinal κ is regular if cf(κ) = κ,
and singular otherwise.

Lemma 32 Let κ be a regular cardinal and X a subset of κ. If X is unbounded,
then |X| = κ. Equivalently, if |X| < κ, then X is bounded.

Proof. If X is unbounded, then X is cofinal. So, cf(κ) ≤ o(X). Now, since
X ⊆ κ, o(X) ≤ κ. Therefore, κ = cf(κ) ≤ |o(X)| = |X| ≤ κ. �

Lemma 33 κ is singular iff there are a set I and a family of infinite cardinals
(κi)i∈I such that κ =

∑
i∈I κi, |I| < κ and, for all i ∈ I, κi < κ .

Proof.

⇒ Assume that κ is singular and let λ = cf(κ). Then, there is a strictly mono-
tone and extensive function f : λ → κ such that supx<λ f(x) = κ, that is,
κ =

⋃
x<λ f(x). Now, κ =

⊎
x<λ g(x) where g(x) = f(x)− {y ∈ f(x)|y < x}.

Therefore, κ =
∑
x<λ |g(x)| with λ < κ and, for all x < λ, |g(x)| ≤ |f(x)| < κ.

⇐ By definition, there is a bijection f from |I| to I. Hence, κ =
∑
α<|I| κf(α) =

max(|I|, ν) where ν = supα<|I| κf(α) = sup{κi|i ∈ I}. Since |I| < κ, κ = ν.
Hence, X = {kf(α)|α < |I|} is cofinal and cf(κ) ≤ o(X) = |I| < κ. �

Lemma 34 h(κ) is regular.
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Proof. If h(κ) is singular, then there are a set I and a family (κi)i∈I of
infinite cardinals such that h(κ) =

∑
i∈I κi, |I| < h(κ) and, for all i ∈ I,

κi < h(κ). Since h(κ) is the smallest cardinal greater than κ, |I| ≤ κ and, for
all i ∈ I, κi ≤ κ. Therefore, h(κ) = max(|I|, supi∈I κi) ≤ κ. Contradiction. �

Hence, every successor cardinal is regular. What about limit cardinals?
There are arbitrary large limit cardinals that are singular. For instance, for
all ordinal α, sup{ωα+i|i < ω} is a singular limit cardinal greater than ωα and
thus greater than α. So, is there any uncountable regular limit cardinal? Such a
cardinal must be a fixpoint of ω, but this is not enough since, for all cardinal κ0,
sup{κi|i < ω}, where κi+1 = ωκi

, is singular. In fact, an uncountable regular
limit cardinal is called weakly accessible: the existence of such a cardinal is not
provable in ZFC. An uncountable limit cardinal κ is called strongly accessible
if it is regular and, for all λ < κ, 2λ < κ. (Under the Generalized Continuum
Hypothesis saying that h(κ) = 2κ, the two notions are equivalent.)
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