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Abstract. We study the termination of rewriting modulo a set of equa-
tions in the Calculus of Algebraic Constructions, an extension of the Cal-
culus of Constructions with functions and predicates de�ned by higher-
order rewrite rules. In a previous work, we de�ned general syntactic
conditions based on the notion of computability closure for ensuring the
termination of the combination of rewriting and β-reduction.

Here, we show that this result is preserved when considering rewriting
modulo a set of equations if the equivalence classes generated by these
equations are �nite, the equations are linear and satisfy general syntac-
tic conditions also based on the notion of computability closure. This
includes equations like associativity and commutativity and provides an
original treatment of termination modulo equations.

1 Introduction

The Calculus of Algebraic Constructions (CAC) [2,3] is an extension of the Cal-
culus of Constructions (CC) [9] with functions and predicates de�ned by (higher-
order) rewrite rules. CC embodies in the same formalism Girard's polymorphic
λ-calculus and De Bruijn's dependent types, which allows one to formalize propo-
sitions and proofs of (impredicative) higher-order logic. In addition, CAC allows
functions and predicates to be de�ned by any set of (higher-order) rewrite rules.
And, in contrast with (�rst-order) Natural Deduction Modulo [13], proofs are
part of the terms.

Very general conditions are studied in [2,4] for preserving the decidability
of type-checking and the logical consistency of such a system. But these condi-
tions do not take into account rewriting modulo equations like associativity and
commutativity (AC), which would be very useful in proof assistants like Coq
[22] since it increases automation and decreases the size of proofs. We already
used the rewriting engine of CiME [8], which allows rewriting modulo AC, for
a prototype implementation of CAC, and now work on a new version of Coq
including rewriting modulo AC. In this paper, we extend the conditions given in
[2] to deal with rewriting modulo equations.

2 The Calculus of Algebraic Constructions

We assume the reader familiar with typed λ-calculi [1] and rewriting [11]. The
Calculus of Algebraic Constructions (CAC) [2] simply extends CC by considering
a set F of symbols and a set R of rewrite rules. The terms of CAC are:



t, u ∈ T ::= s | x | f | [x : t]u | tu | (x : t)u

where s ∈ S = {?,2} is a sort, x ∈ X a variable, f ∈ F , [x : t]u an abstraction,
tu an application, and (x : t)u a dependent product, written t⇒ u if x does not
freely occur in u.

The sort ? denotes the universe of types and propositions, and the sort 2
denotes the universe of predicate types (also called kinds). For instance, the type
nat of natural numbers is of type ?, ? itself is of type 2 and nat⇒ ?, the type
of predicates over nat, is of type 2.

We use bold face letters for denoting sequences of terms. For instance, t is
the sequence t1 . . . tn where n = |t| is the length of t, and (x : T )U is the term
(x1 : T1) . . . (xn : Tn)U (we implicitly assume that |x| = |T | = n).

We denote by FV(t) the set of free variables of t, by dom(θ) the domain of a
substitution θ, by Pos(t) the set of Dewey's positions of t, by t|p the subterm of
t at position p, and by t[u]p the replacement of t|p by u.

Every symbol f is equipped with a sort sf , an arity αf and a type τf which
may be any closed term of the form (x : T )U with |x| = αf . The terms only
built from variables and applications of the form ft with |t| = αf are algebraic.

A typing environment Γ is an ordered list of type declarations x : T . If f is
a symbol of type τf = (x : T )U , we denote by Γf the environment x : T .

A rule for typing symbols is added to the typing rules of CC:

(symb)
` τf : sf
` f : τf

A rewrite rule is a pair l→ r such that (1) l is algebraic, (2) l is not a variable,
and (3) FV(r) ⊆ FV(l). Only l has to be algebraic: r may contain applications,
abstractions and products. This is a particular case of Combinatory Reduction
System (CRS) [18] which does not need higher-order pattern-matching.

If G ⊆ F , RG is the set of rules whose left-hand side is headed by a symbol
in G. A symbol f with R{f} = ∅ is constant, otherwise it is (partially) de�ned.

A rule is left-linear (resp. right-linear) if no variable occurs more than once
in the left-hand side (resp. right-hand side). A rule is linear if it is both left-
linear and right-linear. A rule is non-duplicating if no variable occurs more in
the right-hand side than in the left-hand side.

A term t R-rewrites to a term t′, written t →R t′, if there exists a position
p in t, a rule l → r ∈ R and a substitution σ such that t|p = lσ and t′ = t[rσ]p.
A term t β-rewrites to a term t′, written t →β t

′, if there exists a position p in
t such that t|p = ([x : U ]v u) and t′ = t[v{x 7→ u}]p. Given a relation → and a
term t, let →(t) = {t′ ∈ T | t→ t′}.

Finally, in CAC, βR-equivalent types are identi�ed. More precisely, in the
type conversion rule of CC, ↓β is replaced by ↓βR:

(conv)
Γ ` t : T T ↓βR T ′ Γ ` T ′ : s

Γ ` t : T ′



where u ↓βR v i� there exists a term w such that u→∗βR w and v →∗βR w, →∗βR
being the re�exive and transitive closure of →β ∪ →R. This rule means that
any term t of type T in the environment Γ is also of type T ′ if T and T ′ have
a common reduct (and T ′ is of type some sort s). For instance, if t is a proof of
P (2 + 2) then t is also a proof of P (4) if R contains the following rules:

x+ 0 → x
x+ (s y) → s (x+ y)

This decreases the size of proofs and increases automation as well.
A substitution θ preserves typing from Γ to ∆, written θ : Γ ; ∆, if, for all

x ∈ dom(Γ ), ∆ ` xθ : xΓθ, where xΓ is the type associated to x in Γ . Type-
preserving substitutions enjoy the following important property: if Γ ` t : T and
θ : Γ ; ∆ then ∆ ` tθ : Tθ.

For ensuring the subject reduction property (preservation of typing under
reduction), every rule f l → r is equipped with an environment Γ and a substi-
tution ρ such that,1 if f : (x : T )U and γ = {x 7→ l} then Γ ` f lρ : Uγρ and
Γ ` r : Uγρ. The substitution ρ allows to eliminate non-linearities only due to
typing and thus makes rewriting more e�cient and con�uence easier to prove.
For instance, the concatenation on polymorphic lists (type list : ? ⇒ ? with
constructors nil : (A : ?)listA and cons : (A : ?)A ⇒ listA ⇒ listA) of type
(A : ?)listA⇒ listA⇒ listA can be de�ned by:

app A (nil A′) l′ → l′

app A (cons A′ x l) l′ → cons A x (app A x l l′)
app A (app A′ l l′) l′′ → app A l (app A l′ l′′)

with Γ = A : ?, x : A, l : listA, l′ : listA and ρ = {A′ 7→ A}. For instance,
app A (nil A′) is not typable in Γ (since A′ /∈ dom(Γ )) but becomes typable
if we apply ρ. This does not matter since, if an instance app Aσ (nil A′σ) is
typable then Aσ is convertible to A′σ.

3 Rewriting Modulo

Now, we assume given a set E of equations l = r which will be seen as a set of
symmetric rules, that is, a set such that l→ r ∈ E i� r → l ∈ E . The conditions
on rules imply that, if l = r ∈ E , then (1) both l and r are algebraic, (2) both l
and r are headed by a function symbol, (3) l and r have the same (free) variables.

Examples of equations are:

x+ y = y + x (commutativity of +)
x+ (y + z) = (x+ y) + z (associativity of +)
x× (y + z) = (x× y) + (x× z) (distributivity of ×)

x+ 0 = x (neutrality of 0)

1 Other conditions are necessary that we do not detail here.



add A x (add A′ y S) = add A y (add A′ x S)
union A S S′ = union A S′ S

union A S (union A′ S′ S′′) = union A (union A′ S S′) S′′

where set : ? ⇒ ?, empty : (A : ?)setA, add : (A : ?)A ⇒ setA ⇒ setA and
union : (A : ?)setA ⇒ setA ⇒ setA formalize �nite sets of elements of type
A. Except for distributivity which is not linear, and the equation x + 0 = x
whose equivalence classes are in�nite, all the other equations will satisfy our
strong normalization conditions. Note however that distributivity and neutrality
can always be used as rules when oriented from left to right. Hence, the word
problem for abelian groups or abelian rings for instance can be decided by using
normalized rewriting [19].

On the other hand, the following expressions are not equations since left and
right-hand sides have distinct sets of variables:

x× 0 = 0 (0 is absorbing for ×)
x+ (−x) = 0 (inverse)

Let ∼ be the re�exive and transitive closure of →E (∼ is an equivalence
relation since E is symmetric). We are now interested in the termination of
� =→β ∪ ∼→R (instead of →β ∪ →R before). In the following, we may denote
→E by E , →R by R and →β by β.

In order to preserve all the basic properties of the calculus, we do not change
the shape of the relation used in the type conversion rule (conv): two types T
and T ′ are convertible if T ↓ T ′ with →=→β ∪ →R ∪ →E . But this raises the
question of how to check this condition, knowing that→may be not terminating.
We study this problem in Section 6.

4 Conditions of strong normalization

In the strong normalization conditions, we distinguish between �rst-order sym-
bols (set F1) and higher-order symbols (set Fω). To precisely de�ne what is a
�rst-order symbol, we need a little de�nition before. We say that a constant
predicate symbol is primitive if it is not polymorphic and if its constructors have
no functional arguments. This includes in particular any �rst-order data type
(natural numbers, lists of natural numbers, etc.). Now, a symbol f is �rst-order
if it is a predicate symbol of maximal arity,2 or if it is a function symbol whose
output type is a primitive predicate symbol. Any other symbol is higher-order.
Let Rι = RFι and Eι = EFι for ι ∈ {1, ω}.

Since the pioneer works on the combination of λ-calculus and �rst-order
rewriting [7,20], it is well known that the addition at the object level of a
strongly normalizing �rst-order rewrite system preserves strong normalization.
This comes from the fact that �rst-order rewriting cannot create β-redexes. On

2 A predicate symbol f of type (x : T )U is of maximal arity if U = ?, that is, if the
elements of type ft are not functions.



the other hand, higher-order rewriting can create β-redexes. This is why we
have other conditions on higher-order symbols than merely strong normaliza-
tion. Furthermore, in order for the two systems to be combined without losing
strong normalization [23], we also require �rst-order rules to be non-duplicating
[21]. Note however that a �rst-order symbol can always be considered as higher-
order (but the strong normalization conditions on higher-order symbols may not
be powerful enough for proving the termination of its de�ning rules).

The strong normalization conditions on higher-order rewrite rules are based
on the notion of computability closure [5]. We are going to use this notion for
the equations too.

Typed λ-calculi are generally proved strongly normalizing by using Tait and
Girard's technique of computability predicates/reducibility candidates [14]. In-
deed, a direct proof of strong normalization by induction on the structure of
terms does not work. The idea of Tait, later extended by Girard to the polymor-
phic λ-calculus, is to strengthen the induction hypothesis as follows. To every
type T , one associates a set [[T ]] ⊆ SN (set of strongly normalizing terms), and
proves that every term of type T is computable, that is, belongs to [[T ]].

Now, if we extend such a calculus with rewriting, for preserving strong nor-
malization, a rewrite rule has to preserve computability. The computability clo-
sure of a term t is a set of terms that are computable whenever t itself is com-
putable. So, if the right-hand side r of a rule f l→ r belongs to the computability
closure of l, a condition called the General Schema, then r is computable when-
ever the terms in l are computable.

Formally, the computability closure for a rule (f l → r, Γ, ρ) with τf = (x :
T )U and γ = {x 7→ l} is the set of terms t such that the judgment c̀ t : Uγρ can
be deduced from the rules of Figure 1, where the variables of dom(Γ ) are con-
sidered as symbols (τx = xΓ ), >F is a well-founded quasi-ordering (precedence)
on symbols, with x <F f for all x ∈ dom(Γ ), >f is the multiset or lexicographic
extension3 of the subterm ordering4 �, and T ↓f T ′ i� T and T ′ have a common
reduct by →f=→β ∪ →R<f where R<f = {gu→ v ∈ R | g <F f}.

In addition, every variable x ∈ dom(Γ ) is required to be accessible in some
li, that is, xσ is computable whenever liσ is computable. The arguments of a
constructor-headed term are always accessible. For a function-headed term ft
with f : (x : T )Cv and C constant, only the ti's such that C occurs positively
in Ti are accessible (X occurs positively in Y ⇒ X and negatively in X ⇒ Y ).

The relation c̀ is similar to the typing relation ` of CAC except that symbol
applications are restricted to symbols smaller than f , or to arguments smaller
than l in the case of an application of a symbol equivalent to f . So, verifying
that a rule satis�es the General Schema amounts to check whether r has type
Uγρ with the previous restrictions on symbol applications. It therefore has the
same complexity.

3 Or a simple combination thereof, depending on the status of f .
4 We use a more powerful ordering for dealing with recursive de�nitions on types
whose constructors have functional arguments.



Fig. 1. Computability closure for (f l→ r, Γ, ρ)

(ax)
c̀ ? : 2

(symb<)
c̀ τg : sg

c̀ g : τg
(g <F f)

(symb=)
c̀ τg : sg δ : Γg ;c ∆

∆ c̀ gyδ : V δ

(τg = (y : U)V,
g =F f and yδ <f l)

(var)
∆ c̀ T : s

∆, x : T c̀ x : T
(x /∈ dom(∆))

(weak)
∆ c̀ T : s ∆ c̀ u : U

∆, x : T c̀ u : U
(x /∈ dom(∆))

(abs)
∆,x : U c̀ v : V ∆ c̀ (x : U)V : s

∆ c̀ [x : U ]v : (x : U)V

(app)
∆ c̀ t : (x : U)V ∆ c̀ u : U

∆ c̀ tu : V {x 7→ u}

(prod)
∆,x : U c̀ V : s

∆ c̀ (x : U)V : s

(conv)
∆ c̀ t : T ∆ c̀ T : s ∆ c̀ T

′ : s

∆ c̀ t : T ′
(T ↓f T

′)

Now, how the computability closure can help us in dealing with rewriting
modulo equations? When one tries to prove that every term is computable, in the
case of a term ft, it is su�cient to prove that every reduct of ft is computable.
In the case of a head-reduct f lσ → rσ, this follows from the fact that r belongs
to the computability closure of l since, by induction hypothesis, the terms in lσ
are computable.

Now, with rewriting modulo, a R-step can be preceded by E-steps: ft →∗E
gu→R t′. To apply the previous method with gu, we must prove that the terms
in u are computable. This can be achieved by assuming that the equations also
satisfy the General Schema in the following sense: an equation (f l → gm, Γ, ρ)
with τg = (x : T )U and γ = {x 7→ m} satis�es the General Schema if, for all
i, c̀ mi : Tiγρ, that is, the terms in m belong to the computability closure of l.
By symmetry, the terms in l belong to the computability closure of m.

One can easily check that this condition is satis�ed by commutativity (what-
ever the type of + is) and associativity (if both y and z are accessible in y+ z):

x+ y = y + x
x+ (y + z) = (x+ y) + z



For commutativity, this is immediate and does not depend on the type of +:
both y and x belong to the computability closure of x and y.

For associativity, we must prove that both x + y and z belong to the com-
putability closure CC of x and y+z. If we assume that both y and z are accessible
in y + z (which is the case for instance if + : nat⇒ nat⇒ nat), then z belongs
to CC and, by using a multiset status for comparing the arguments of +, x+ y
belongs to CC too since {x, y}�mul {x, y + z}.

We now give all the strong normalization conditions.

Theorem 1 (Strong normalization of β ∪∼R). Let ∼1 be the re�exive and
transitive closure of E1. The relation � =→β ∪ ∼→R is strongly normalizing if
the following conditions adapted from [2] are satis�ed:

• →=→β ∪ →R ∪ →E is con�uent,5

• the rules of R1 are non-duplicating,6 R1 ∩Fω = E1 ∩Fω = ∅7 and ∼1→R1 is
strongly normalizing on �rst-order algebraic terms,

• the rules of Rω satisfy the General Schema and are safe,8

• rules on predicate symbols have no critical pair, satisfy the General Schema9

and are small,10

and if the following new conditions are satis�ed too:

• there is no equation on predicate symbols,

• E is linear,

• the equivalence classes modulo ∼ are �nite,

• every rule (f l → gm, Γ, ρ) ∈ E satis�es the General Schema in the following
sense: if τg = (x : T )U and γ = {x 7→m} then, for all i, c̀ mi : Tiγρ.

Not allowing equations on predicate symbols is an important limitation. How-
ever, one cannot have equations on connectors if one wants to preserve the
Curry-Howard isomorphism. For instance, with commutativity on ∧, one looses
subject reduction. Take ∧ : ?⇒ ?⇒ ?, pair : (A : ?)(B : ?)A⇒ B ⇒ A∧B and
π1 : (A : ?)(B : ?)A ∧ B ⇒ A de�ned by π1 A B (pair A′ B′ a b) → a. Then,
π1 B A (pair A B a b) is of type B but a is not.

5 Strong normalization proof

The strong normalization proof follows the one given in [6] very closely.11 We only
give the de�nitions and lemmas that must be modi�ed. As previously explained,

5 If there are type-level rewrite rules.
6 If there are higher-order rules.
7 First-order rules/equations only contain �rst-order symbols.
8 No pattern-matching on predicates.
9 There are other possibilities. See [2] for more details.

10 A rule f l → r is small if every predicate variable in r is equal to one of the li's.
11 The proof given in [6] is an important simpli�cation of the one given in [2].



the strong normalization is obtained by de�ning an interpretation [[T ]] ⊆ SN for
every type T , and by proving that every term of type T belongs to [[T ]].

More precisely, for every type T , we de�ne the set RT of the possible inter-
pretations, or candidates, for the terms of type T . R(x:U)V is the set of func-
tions R from T × RU to RV that are stable by reduction: if u → u′ then
R(u, S) = R(u′, S). A term t is neutral if it is distinct from an abstraction or a
constructor. R? is the set of sets R ⊆ T such that:

(R1) Strong normalization: R ⊆ SN .

(R2) Stability by reduction: if t ∈ R then →(t) ⊆ R.
(R3) Neutral terms: if t is neutral and �(t) ⊆ R then t ∈ R.

Candidates form a complete lattice. A candidate assignment ξ is a function
which associates a candidate to every variable. Given an interpretation I for
predicate symbols, a candidate assignment ξ and a substitution θ, the interpre-
tation of a type T , written [[T ]]Iξ,θ, is de�ned in [4]. The elements of [[T ]]Iξ,θ are
said computable. A pair (ξ, θ) is Γ -valid, written ξ, θ |= Γ , if, for all x ∈ dom(Γ ),
xξ ∈ RxΓ and xθ ∈ [[xΓ ]]Iξ,θ.

Then, strong normalization is obtained by de�ning an interpretation If ∈
Rτf for every predicate symbol f , and by proving that every symbol f is com-
putable, that is, f ∈ [[τf ]]. If τf = (x : T )U , it amounts to check that, for all
Γf -valid pair (ξ, θ), fxθ ∈ [[U ]]ξ,θ. For the interpretation, we keep the one for
constant predicate symbols given in [6] but slightly modify the interpretation of
de�ned predicate symbols for taking into account the new reduction relation.

Although we do not change the interpretation of constant predicate symbols,
we must check that the interpretation of primitive predicate symbols is still
SN (hence that, for primitive predicate symbols, computability is equivalent to
strong normalization), since this property is used for proving that a terminating
and non-duplicating (if there are higher-order rewrite rules) �rst-order rewrite
system preserves strong normalization. The veri�cation of the former property
is easy. We now prove the latter.

Lemma 2. [16] If the ∼-classes are �nite then ∼� is strongly normalizing.

Proof. We prove that (∼�)n ⊆∼�n by induction on n. For n = 0, this is
immediate. For n+ 1, (∼�)n+1 ⊆∼�∼�n ⊆∼∼��n ⊆∼�n+1. ut

Lemma 3. [12] If t ∈ SN (β) and t→R1 u then β(t)→∗R1
β(u).

Proof. Dougherty proves this result in [12] (Proposition 4.6 and Theorem 4.7)
for the untyped λ-calculus. The proof can clearly be extended to the Calculus
of Algebraic Constructions. We inductively de�ne � as follows:

• a � a;

• if l→ r ∈ R1 and σ � θ then lσ � rθ;

• if a � b and c � d then ac � bd, [x : a]c � [x : b]d and (x : a)c � (x : b)d;
• if a � b then fa � fb.

We now prove that, if t→β t
′ and t � u then there exist t′′ and u′ such that

t′ →∗β t′′ � u′ and u→∗β u′ by induction on t � u.



• u = t. Immediate.

• t = lσ, u = rθ and σ � θ. Since left-hand sides of rules are algebraic, the
β-reduction must take place in an occurrence of a variable x ∈ FV(l). Let v′

be the β-reduct of xσ. By induction hypothesis, there exists v′′ and w such
that v′ →∗β v′′ � w and xθ →∗β w. Let σ′′ such that xσ′′ = v′′ and yσ′′ = yσ
if y 6= x, and θ′ such that xθ′ = w and yθ′ = yθ if y 6= x. We have σ′′ � θ′.
By β-reducing all the instances of the occurrences of x in l to v′′, we get
t′ →∗β lσ′′ � rθ′ and, by reducing all the instances of the occurrences of x in
r to w, we get u = rθ →∗β rθ′.
• Assume that t = [x : a]c k, u = v l, [x : a]c � v, k � l and t′ = c{x 7→ k}.
Then, v = [x : b]d with a � b and c � d. Therefore, c{x 7→ k} � d{x 7→ l}
and u→β d{x 7→ l}.
Assume now that t = ac, u = bd, a � b, c � d and a →β a′. The other
cases are similar. By induction hypothesis, there exist a′′ and b′ such that
a′ →∗β a′′ � b′ and b→∗β b′. Therefore, a′c→∗β a′′c � b′d and bd→∗β b′d.
• t = fa, u = fb and a � b. Then, there is i such that t′ = fa′, ai →β a

′
i and

aj = a′j if j 6= i. By induction hypothesis, there exists a′′i and b′i such that
a′i →∗β a′′i � b′i and bi →∗β b′i. Let a′′j = aj and b

′
j = bj if j 6= i. Then, a′′ � b′,

t′ = fa′ →∗β fa′′ � fb′ and u = fb→∗β fb′.

Now, since t is β-strongly normalizable, we can prove the lemma by induction
on →β . If t is in β-normal form then u also is in β-normal form since R1-
reductions preserve β-normal forms. Hence, β(t) = t � u = β(u). Now, if
t →β t

′ then there exist t′′ and u′ such that t′ →∗β t′′ � u′ and u →∗β u′. By
induction hypothesis, β(t′′) � β(u′). Therefore, β(t) � β(u). ut

De�nition 4 (Cap and aliens). Let ζ be an injection from the classes of
terms modulo ↓∗ to X . The cap of a term t is the biggest �rst-order algebraic
term cap(t) = t[x1]p1 . . . [xn]pn such that xi = ζ(t|pi). The t|pi 's are called the
aliens of t. We denote by β(t) the β-normal form of t, by capβ(t) the cap of β(t),
by Cap(t) (resp. Capβ(t)) the ∼1-equivalence class of cap(t) (resp. capβ(t)), by
aliens(t) the multiset of the aliens of t, and by Aliens(t) the multiset union of
the (�nite) ∼-equivalence classes of the aliens of t.

Theorem 5 (Computability of �rst-order symbols). If f ∈ F1 and t ∈
SN then ft ∈ SN .

Proof. We prove that every �-reduct t′ of t = ft is strongly normalizable. In
the following, (>a, >b)lex denotes the lexicographic ordering built with >a and
>b, and >mul denotes the multiset extension of >.

Case Rω 6= ∅. By induction on (Aliens(t), Cap(t)) with ((→β∼ ∪ →R∼
∪�∼)mul, (→R1∼1)mul)lex as well-founded ordering. It is easy to see that the
aliens are strongly normalizable for →β∼, →R∼ and �∼ since they are so for
∼→β (Lemma 7), ∼→R and ∼� (Lemma 2) respectively.

If t→β t
′ then the reduction takes place in an alien v. Let v′ be its β-reduct.

If v′ is not headed by a symbol of F1 then Aliens(t) (→β∼)mul Aliens(u).
Otherwise, its cap increases the cap of t′ but, since the aliens of t′ are then strict
subterms of v′, we have Aliens(t) (→β∼ ∪�∼)mul Aliens(u).



Assume now that t→∗E u→R t′. We �rst look at what happens when t→E u.
There are two cases:

• If the reduction takes place in the cap then this is a E1-reduction. Since both
the left-hand side and the right-hand side of a �rst-order rule are �rst-order
algebraic terms, we have cap(t)→E1 cap(u) and, since the rules of E are linear,
we have aliens(t) = aliens(u).
• If the reduction takes place in an alien then cap(t) = cap(u) and aliens(t)

(→E)mul aliens(u).
So, in both cases, Cap(t) = Cap(u) and Aliens(t) = Aliens(u). Therefore,

by induction on the number of E-steps, if t →∗E u then Cap(t) = Cap(u) and
Aliens(t) = Aliens(u). We now look at the R-reduction. There are two cases:

• If the reduction takes place in the cap then it is a R1-reduction. Since both
the left-hand side and the right-hand side of a �rst-order rule are �rst-order
algebraic terms, we have cap(u) →R1 cap(t

′) and, since the rules of R1 are
non-duplicating, we have aliens(u) ⊆ aliens(t′). If aliens(u) ( aliens(t′)
then Aliens(u) ( Aliens(t′). Otherwise, Cap(u) (→R1∼1)mul Cap(t′).
• If the reduction takes place in an alien then, as in the case of a β-reduction,
we have Aliens(t) (→R∼ ∪�∼)mul Aliens(u).
Case Rω = ∅. Since the ti's are strongly normalizable and no β-reduction

can take place at the top of t, t has a β-normal form. We prove that every �-
reduct t′ of t is strongly normalizable, by induction on (Capβ(t), Aliens(t)) with
((→R1∼1)mul, (→β∼ ∪ →R∼ ∪�∼)mul)lex as well-founded ordering.

If t→β t
′ then capβ(t) = capβ(t′) and, as seen in the previous case, Aliens(t)

(→β∼ ∪�∼) Aliens(u).
Otherwise, t →∗E u →R1 t

′. As seen in the previous case, cap(t) →∗E1 cap(u)
and Aliens(t) = Aliens(u). Since β and E commute and E preserves β-normal
forms, we have capβ(t)→∗E1 capβ(u) and thus Capβ(t) = Capβ(u). We now look
at the R1-reduction. There are two cases:

• The reduction takes place in the cap. Since both the left-hand side and the
right-hand side of a �rst-order rule are �rst-order algebraic terms, we have
cap(u) →R1 cap(t

′) and, since β-reductions cannot reduce the cap, we have
capβ(u)→R1 capβ(t′) and thus Capβ(t) (→R1∼1)mul Capβ(t′).
• If the reduction takes place in an alien then Aliens(t) (→R∼)mul Aliens(u)
and, after Lemma 3, β(u) →∗R1

β(t′). Therefore, capβ(u) →∗R1
capβ(t′) and

Capβ(u) (→R∼)mul Capβ(t′). ut

We now come to the interpretation of de�ned predicate symbols. Let f be
a de�ned predicate of type (x : T )U . We de�ne If (t,S) by induction on t,S
as follows. If there exists a rule (f l → r, Γ, ρ) and a substitution σ such that
t �∗ ∼ lσ and lσ is in �-normal form, then If (t,S) = [[r]]Iξ,σ with σ = {x 7→ t}
and xξ = Sκx where κx is given by smallness. Otherwise, we take the greatest
element of RU .

We must make sure that the de�nition does not depend on the choice of the
rule. Assume that there is another rule (f l′ → r′, Γ ′, ρ′) and a substitution σ′

such that t �∗ ∼ l′σ′ in normal form. By con�uence and Lemma 10, we have



lσ ∼ l′σ′. Since → is con�uent and rules on predicate symbols have no critical
pair, there exists σ′′ such that σ →∗E σ′′, σ′ →∗E σ′′ and lσ′′ = l′σ′′. Therefore,
for the same reason, we must have l = l′ and r = r′.

Finally, we check that the interpretation is stable by reduction: if t→ t′ then,
since → is con�uent, t has a �-normal form i� t′ has a �-normal form too.

We now prove the computability of higher-order symbols.

Theorem 6 (Computability of higher-order symbols). If f ∈ Fω, τf =
(x : T )U and ξ, θ |= Γf then fxθ ∈ [[U ]]ξ,θ.

Proof. The proof follows the one given in [6] except that → is replaced by �.
We examine the di�erent �-reducts of fxθ. If this is a β-reduction, it must
take place in one xiθ and we can conclude by induction hypothesis. Otherwise,
we have fxθ →∗E gu →R t′. Since the equations satisfy the General Schema,
the ui's are computable. Now, if the R-reduction takes place in one ui, we can
conclude by induction hypothesis. Otherwise, this is a head-R-reduction and we
can conclude by correctness of the computability closure. ut

6 Con�uence

We now study the con�uence of→ and the decidability of ↓∗. Let R be a relation.
R,R+,R∗ respectively denote the inverse, the transitive closure, and the re�exive
and transitive closure of R. Composition is denoted by juxtaposition.

� R is con�uent if R
∗
R∗ ⊆ R∗R∗.

� R is con�uent modulo ∼ or ∼-con�uent12 if R
∗
R∗ ⊆ R∗ ∼ R∗.

� R is ∼-con�uent on ∼-classes if R∗ ∼ R∗ ⊆ R∗ ∼ R∗.
� R is locally con�uent if RR ⊆ R∗R∗.
� R is locally ∼-con�uent if RR ⊆ R∗ ∼ R∗.
� R is locally ∼-con�uent on ∼-classes if R ∼ R ⊆ R∗ ∼ R∗.
� R is locally ∼-coherent if ER ⊆ R∗ ∼ R∗.
� R and S commute if RS ⊆ SR.
� R ∼-commutes on ∼-classes if R ∼ R ⊆ R ∼ R.

Lemma 7. If E is linear then ∼ commutes with β and �.

Proof. Assume that t →β,p u (β-reduction at position p) and t →E,q v (E-
reduction at position q). There are several cases depending on the relative posi-
tions of the di�erent reductions.

• p and q have no common pre�x. Then the reductions clearly commute and
Eβ ⊆ βE in this case (remember that E = E).

12 The de�nitions of con�uence modulo and local con�uence modulo are those of [16].
They di�er from Huet's de�nition [15]. Huet's con�uence modulo corresponds to our
con�uence modulo on equivalence classes, but Huet's local con�uence modulo does
not correspond to our local con�uence modulo on equivalence classes.



• p = q: not possible since left-hand sides of rules are algebraic and distinct
from a variable.

• p < q: t|p = [x : A]b a and u = t[bθ]p with θ = {x 7→ a}.
� Reduction in A: v = t[[x : A′]b a]p with A →E A′. Then, v →β u and
Eβ ⊆ β.

� Reduction in b: v = t[[x : A]b′ a]p with b →E b′. Then, v →β t[b′θ]p E← u
and Eβ ⊆ βE .

� Reduction in a: v = t[[x : A]b a′]p with a →E a′. Let θ′ = {x 7→ a′}. Then,
v →β t[bθ′]p ∗E← u and Eβ ⊆ βE∗.

• p > q: t = t[lσ]q and v = t[rσ]q. Since left-hand sides of rules are algebraic,
there is one occurrence of a variable x ∈ FV(l) such that xσ →β w. Let σ

′

be the substitution such that xσ′ = w and yσ′ = yσ if y 6= x. Let a (resp.
b) be the number of occurrences of x in l (resp. r). Then, u→a−1

β t[lσ′]q →E
t[rσ′]q bβ← v. Since E is linear, we have a = b = 1 and thus Eβ ⊆ βE .
In conclusion, in every case, we have Eβ ⊆ βE∗. By induction on the number

of E-steps, we get E∗β ⊆ βE∗, that is, ∼ β ⊆ β ∼. Therefore, ∼ � ⊆ � ∼ since
� = β ∪ ∼R, ∼ β ⊆ β ∼⊆ � ∼ and ∼∼R ⊆ � ∼. ut

Corollary 8. If E is linear and t ∈ SN (β) then t ∈ SN (∼β).

Proof. Assume that t ∈ SN (β). We prove that (∼β)n ⊆ βn∼ by induction on
n. For n = 0, this is immediate. For n + 1, (∼ β)n+1 = (∼ β)n ∼ β ⊆ βn ∼∼
β ⊆ βn+1 ∼. Therefore, t ∈ SN (∼ β). ut

Lemma 9. If E is linear then →∗⊆ �∗ ∼ and ↓= �∗ ∼ ∗�.

Proof. →∗⊆ (β ∪ E ∪ ∼R)∗. Since ∼ β∗ ⊆ β∗ ∼ and ∼∼R ⊆ ∼R, we get
→∗⊆∼ ∪ (∼R)∗→∗ ∪β∗→∗. Therefore, →∗⊆ �∗ ∼. ut

Lemma 10. If E is linear then the following propositions are equivalent: → is
con�uent, � is ∼-con�uent, � is ∼-con�uent on ∼-classes.

Proof. Since E is linear, we have →∗⊆ �∗ ∼ and ∼ �∗ ⊆ �∗ ∼. We prove that
� is ∼-con�uent if → is con�uent: ∗ ��∗ ⊆ ∗←→∗⊆→∗ ∗←⊆ �∗ ∼∼ ∗�. We
prove that → is con�uent if � is ∼-con�uent: ∗←→∗⊆∼ ∗� �∗∼⊆∼ �∗ ∼
∗� ∼⊆ �∗ ∼∼∼ ∗�. We now prove that � is ∼-con�uent on ∼-classes if � is
∼-con�uent (the inverse is trivial): ∗� ∼ �∗ ⊆ ∗��∗ ∼⊆ �∗ ∼ ∗� ∼⊆ �∗ ∼∼
∗�. ut

Theorem 11. Type-checking is decidable if � is weakly normalizing, R is �nitely
branching, � is ∼-con�uent on ∼-classes, E is linear and ∼ is decidable.

Proof. Type-checking is deciding whether a term t has type T in an environment
Γ . A type for t can be easily inferred. Then, one checks that it is equivalent to T
(see [10] for more details). Thus, we are left to prove that ↓∗ is decidable. Since
E is linear and � is ∼-con�uent on ∼-classes, by Lemma 10, → is con�uent and
↓∗=↓. Since E is linear, by Lemma 9, ↓= �∗ ∼ ∗�. Since � is weakly normalizing



and �nitely branching (∼-classes are �nite and β and R are �nitely branching),
one can de�ne a function nf computing a�-normal form of a term. We prove that
t ↓∗ u only if nf(t) ∼ nf(u) (the inverse is trivial). Assume that t�∗ t′ ∼ u′ ∗�u.
Since � is ∼-con�uent on ∼-classes, nf(t) ∼ nf(t′) ∗� t′ ∼ u′�∗nf(u′) ∼ nf(u).
Again, since � is ∼-con�uent on ∼-classes, there exist t′′ and u′′ such that
nf(t) ∼ nf(t′) �∗ t′′ ∼ u′′ ∗� nf(u′) ∼ nf(u). Since nf(t′) and nf(u′) are �-
normal forms, we have nf(t) ∼ nf(u). ut

Lemma 12. For all relation R, if R ∼-commutes on ∼-classes then ∼R is
∼-con�uent on ∼-classes.

Proof. Let S = ∼ R. We prove that S
p ∼ Sn ⊆ Sn ∼ Sp by induction on n.

• Case n = 0. By induction on p. The case p = 0 is immediate. Case p + 1:
S
p+1 ∼ = SS

p ∼ ⊆ S ∼ Sp ⊆ ∼ SSp since S ∼ = R ∼∼ = R ∼ = S ⊆ ∼ S.
• Case n = 1. By induction on p.

� Case p = 0. ∼ S = ∼∼ R = ∼ R = S ⊆ S ∼.
� Case p + 1. S

p+1 ∼ S = SS
p ∼ S ⊆ SS ∼ Sp ⊆ S ∼ SSp since SS ∼ =

R ∼∼ R ∼ = R ∼ R ∼ ⊆ R ∼ R ∼ ⊆ S ∼ S.
• Case n+1. S

p∼ Sn+1 = S
p∼ SSn ⊆ S∼ SpSn ⊆ S∼ Sp∼ Sn ⊆ S∼ Sn∼ Sp

and we prove that S ∼ Sn ∼ ⊆ Sn+1 ∼ by induction on n. The case n = 0
is immediate. Case n + 1: S ∼ Sn+1 ∼ ⊆ S ∼ Sn ∼ S ∼ ⊆ Sn+1 ∼ S ∼ ⊆
Sn+1S ∼ since ∼ S = ∼∼ R = ∼ R = S. ut

Lemma 13. For all relation R, if R is ∼-con�uent on ∼-classes then ∼R is
∼-con�uent on ∼-classes.

Proof. If R is∼-con�uent on∼-classes then R∗ ∼-commutes on∼-classes. Hence,
by Lemma 12, ∼R∗ is ∼-con�uent on ∼-classes. Therefore, ∼R is ∼-con�uent
on ∼-classes since (∼R)∗ ⊆ (∼R∗)∗ and (∼R∗)∗ ⊆ (∼R)∗ ∼. ut

Theorem 14. � is ∼-con�uent on ∼-classes if � is strongly normalizing, E is
linear, R is locally ∼-con�uent and R is locally ∼-coherent.

Proof. We �rst prove that β∪R is ∼-con�uent on ∼-classes. In [15], Huet proves
that a relation R is ∼-con�uent on ∼-classes if R ∼ is strongly normalizing, R is
locally ∼-con�uent and R is locally ∼-coherent. We take R = β∪R and check the
conditions. R∼ is strongly normalizing since � is strongly normalizing and β and
∼ commute (E is linear). Local con�uence: ββ ⊆ β∗β∗ since β is locally con�uent,

Rβ ⊆ β∗R∗β∗ after the proof of Lemma 7, and RR ⊆ R∗ ∼ R∗ by assumption.
Local coherence: Eβ ⊆ βE ⊆ β ∼ since E is linear, and ER ⊆ R∗ ∼ R∗ by
assumption.

So, R = β ∪ R is ∼-con�uent on ∼-classes. Therefore, by Lemma 13, ∼R is
∼-con�uent on ∼-classes. We now prove the theorem. We have �∗ ⊆ (∼R)∗ and
(∼R)∗ ⊆ �∗ ∼ (β and ∼ commute since E is linear). Thus, ∗� ∼ �∗ ⊆ (∼R)∗ ∼
(∼R)∗ ⊆ (∼R)∗ ∼ (∼R)∗ ⊆ �∗ ∼∼ ∗�. ut



Huet also proves in [15] that R is locally ∼-con�uent i� its critical pairs are
∼-con�uent, and that R is locally ∼-coherent if R is left-linear and the critical
pairs between R and E are ∼-con�uent. So, ∼-con�uence is decidable whenever
� is strongly normalizing, ∼ is decidable and R ∪ E is �nite: it amounts to
checking whether the critical pairs between the rules, and between the rules and
the equations (in both directions), are ∼-con�uent.

Unfortunately, when considering type-level rewriting, con�uence is required
for proving strong normalization. Whether strong normalization can be proved
by using local con�uence only is an open problem. Fortunately, con�uence can
be proved for a large class of rewrite systems without using strong normalization,
namely the left-linear systems.

Theorem 15. � is ∼-con�uent on ∼-classes if E is linear, R is left-linear and
R is ∼-con�uent on ∼-classes.

Proof. In [24], Van Oostrom and Van Raamsdonk prove that the combination of
two left-linear and con�uent Combinatory Reduction Systems (CRS) H and J
is con�uent if all the critical pairs between the rules of H and the rules of J are
trivial. We prove the theorem by taking H = R∪ E and J = β, and by proving
that H is con�uent. Since H∗ ⊆ (∼R)∗ ∼, we have H∗H∗ ⊆∼ (∼R)∗(∼R)∗ ∼.
Since R is ∼-con�uent on ∼-classes, by Lemma 13, ∼R is ∼-con�uent on ∼-
classes. Therefore, ∼ (∼R)∗(∼R)∗ ∼⊆∼ (∼R)∗ ∼ (∼R)∗ ∼⊆ H∗H∗. ut

Again, R is ∼-con�uent on ∼-classes if ∼R is strongly normalizing and R is
locally con�uent and ∼-coherent, which can be proved by analyzing the critical
pairs between the rules and between the rules and the equations (when R is
left-linear) [15].

7 Conclusion

In [3,2], we give general syntactic conditions based on the notion of computability
closure for proving the strong normalization of β-reduction and (higher-order)
rewriting. In this paper, we show that the notion of computability closure can
also be used for proving the strong normalization of β-reduction and (higher-
order) rewriting modulo (higher-order) equations. It is interesting to note that,
in our approach, the introduction of equations does not a�ect the conditions on
rules: although based on the same notion, equations and rules are dealt with
separately. Finally, one may wonder whether our method could be extended
to Jouannaud and Rubio's Higher-Order Recursive Path Ordering (HORPO)
[17,25], which also uses the notion of computability closure for increasing its
expressive power.
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