
page 1

Abstract
Software development suffers from a number of well known

difficulties, both technical and managerial [2]. A technical
approach that could help to reduce them is the use of Computer-
Aided Software Engineering (CASE) technologies. However,
current Integrated Project Support Environment (IPSE)
frameworks impose many constraints on CASE tool vendors, and
this has impeded their adoption [10]. A more incremental strategy
should be considered for the transfer and the diffusion of those
technologies.

This paper describes a document-centered approach and a
simple but extendable system called Open Software Development
System (OSDS) based on this approach. First, we describe
difficulties inherent in the management of documents involved in
software development. Second, we define some requirements to
address those difficulties. Finally, we describe the important
features of OSDS; these include an extension of Mosaic4 [3] that
enables anyone with network access to connect to an OSDS,
browse through it, and automatically integrate some documents
into his/her own system.

Keywords: CASE environment framework, documentation,
hypertext technology, reuse, World-Wide Web, Mosaic, OSDS.

1. Introduction
Before presenting the contents of the further sections, we are

going to present an example of the potential use of OSDS.

1.1 An example scenario with OSDS
In this section, we describe OSDS as it is seen by the user. We

consider a team which has to improve some critical part of legacy
software, to reach an efficiency equivalent to competitors.
Requirements, designs, code, tests, and documentation, are already
integrated into an OSDS and linked one another.

The team manager has little time available to complete this
project successfully, and, for this reason, he or she has decided to buy
and integrate efficient software components instead of rewriting the
old ones. Consequently, a designer has undertaken to look for such

A document-centered approach
for an open CASE environment framework

connected with the World-Wide Web

components in the OSDS of specialized companies, through the
World-Wide Web, such that the old software design can be easily
adapted.

Once the designer has found suitable components, and the
manager has signed an agreement with the vending company, the
OSDS is authorized to retrieve the software components. Then it can
automatically integrate them within the old software documents, and
a developer is undertaken to readjust the interfaces with the help of the
system.

Finally, once this is done and checked by the system, a
compilation is automatically carried out. After a successful
compilation, tests can be generated and run to check the correctness
and the efficiency of the new release.

Furthermore, all along that process, changes have been registered
and documented, while the system was insuring the consistency of all
the links, versions and configurations.

1.2 Overview of the further sections
Section 2 presents difficulties inherent in the management of

documents involved in software development: traceability,
documentation, modification and restructuring, reuse.

Section 3 recalls some facts about the today’s few widespread use
of the CASE environment framework technology.

Then, section 4 presents requirements for a CASE environment
framework to address the problems described in sections 2 and 3.

Finally, section 5 presents the main features of such a system,
called Open Software Development System (OSDS). Especially, it
describes an extension of Mosaic [3] to be used to connect an OSDS
from the World-Wide Web.

2. Difficulties inherent in the management of
documents involved in software development
2.1 Traceability

A manager needs to know the stage of development of a product
easily and quickly, in order to be able to plan and to introduce new
resources if necessary. But this knowledge is not readily available
because dependencies between specification and implementation are
not well traced. This problem exists at all steps of the software life-
cycle: the lack of traceability might be between requirements and
design, or between design and code.

Traceability is not only useful during the initial development
phase, but also during maintenance or evolution phases when, for
example, managers need to estimate the impact of a requirement
change on subsequent documents (such as design, code, and test
documents), and to evaluate the cost of the change.

The hypertext technology should greatly help to resolve this

Frédéric BLANQUI
ENSIMAG1

Concordia University2 and McGill University3

Email: Frederic.Blanqui@ensimag.imag.fr
Web Site: " http://ensimag.imag.fr/OSDS/"

1. Ecole Nationale Supérieure d’Informatique et de Mathématiques Appli-
quées de Grenoble (National Graduate School in Computer Science and
Applied Mathematics of Grenoble), Grenoble, France. See "http://www.in-
pg.fr/" and "http://www.imag.fr/".
2. Montreal, Canada. See "http://www.concordia.ca/".
3. Montreal, Canada. See "http://www.mcgill.ca/".
4. Mosaic is a free Web browser developed by the Software Development
Group (SDG) of the National Center for Supercomputing Applications
(NCSA) of the University of Illinois at Urbana-Champaign. See "http://
www.ncsa.uiuc.edu/SDG/Software/Mosaic/NCSAMosaicHome.html".

This paper should be published in
"Software Engineering Notes"
(ACM Publication) inJanuary 1997
(see "http://www.acm.org/sigsoft/").

A document-centered approach for a CASE environment framework connected with the World Wide Web

page 2

problem, but as yet there are only a few tools (including text editors,
graphical editors, etc.) that enable the user to include markups in
documents, to signal references to other documents, or to put
annotations during review processes. For instance, programming
languages have no syntactical structures comparable to the links of
HTML (HyperText Markup Language) [21]:
Consequently, references in program sources must be made inside
comments to avoid compilation problems.

We think that the hypertext technology, although it can’t erase
the “invisibility” of software, as described by Brooks in [2] as being
an “essential” characteristic of software, is able to greatly reduce it.

2.2 Documentation
The documents involved in software development often suffers

from a lack of documentation. Yet, documentation is critical for the
successful development of complex software. For instance, during
development, modules are developed separately; later, they are
integrated together. If the module interfaces or the communication
protocols involved are not well documented, problems are bound to
arise during integration.

But, above all, documentation is needed during maintenance,
reuse, evolution, or enhancement of software, since these tasks are
often performed by people who were not involved in the
development. Thus managers, designers, developers, and, in fact,
everyone who is involved in the process, must maintain a record of
their choices, plans, strategies, modifications, and the reasons for all
of the decisions involved. Such records enable them to analyze a
posteriori their choices, by comparing them with previous and current
results. They also enable other people to understand why the
developers did what they did (or didn't do), in order to work on or
(re)use the things that the documentation describes, to stand in for
them, or simply to take advantage of their experience. Thus good
documentation can reduce the duration of a learning phase while bad
documentation may well increase it.

In [4], Humphrey describes a Personal Software Process (PSP)
turn toward planning accuracy, productivity and quality control,
through basic statistical methods. At the organization level, Basili and
al., in [5], present the experience factory concept “to institutionalize
the collective learning of the organization that is at the root of
continual improvement and competitive advantage”. Here, we want to
underline the importance of documenting, throughout the software
life-cycle, all useful decisions (e.g. choice of a design structure,
choice of an algorithm, choice of a data structure, choice of a testing
strategy, etc.).

It is therefore important to seek criteria by which documentation
can be judged. We propose some criteria that we consider to be
important but we do not try to be exhaustive and precise. For
additional material, the reader is referred to the specialized literature
in information science [6]. The first task is to define clearly and
precisely the purpose of the documentation under consideration. The
purpose of a document defines the information it must provide, and
the organization of that information.

Qualitative criteria:
- Is the goal of the documentation well defined? For what

purposes is the documentation intended?
- Is the documentation coherent? Is information always organized

in the same manner? Are there contradictions between different

sections?
- Is the documentation clear? Is it well written? Is the structure

understandable?
- Is the documentation concise? Is it addressing the essential

ideas?
- Is it easy to find a specific information in the scope of the

documentation? Is there an index, a table of contents, and so on?
Logical criteria (true or false):
- Is the documentation complete? Does it state requirements and

achieve them?
- Is the documentation up to date with the product it deals with?
- Is the documentation correct? Are there any mistake?
- Is the documentation easily identifiable? Does it give

information such as authors' names, release date, source, and
addresses.

Despite the fact that documentation can’t erase the “complexity”,
the “conformity” obligations, and the “changeability” of software [2],
it is an indispensable resource to master these elements.

2.3 Modification and restructuring
Software often grows by little strokes, fixing a bug here, adding

a new piece of functionality there, and so on. such that, in the end, the
software has lost any clear structure that it might once have had.
Furthermore, the code is often changed directly without updating the
corresponding design documents. Finally, after several years, the
software becomes unmaintainable and unmanageable. This situation
is made worse by the fact that people involved in its beginning may
have left the company.

Software development environments should enable users to
change the structure of software without difficulty (move a function
or a submodule from a module to another, split a too big function in
smaller components, etc.). Developers should not be required to think
in terms of files but rather in terms of logical units of code organized
in modules and submodules. But only a programming environment
would be able to manage a large number of code units and the many
dependencies between them.

Although this is not an attack on the “essential” aspect of
software [2], this should greatly simplify the developers’ life, by
getting rid of those time-consuming worries, thus enabling them to
concentrate on what is their actual task. Therefore, that could have an
unnegligible impact on productivity.

2.4 Reuse
One solution that is usually considered to increase the

productivity, the reliability, and the quality of a software development
process, is to reuse parts of products and processes previously carried
out [1] [2]. In particular, we have grounds for greater confidence in
the quality of components that have been used in other products. It is
not only code of some functions or modules that can be reused, but
also design, architecture, requirements, standards, processes, and
indeed any factor that is involved in software production.

To deduce from specific requirements what could be got back
and consistently integrated in one's own environment, how and where
to find that, to actually carry out the integration, and then to check that
the reuse reaches its goals, is an important process in its own right
[7]. One cannot hope to efficiently perform such a reuse process
unless CASE technology enables him/her to find and compare

A document-centered approach for a CASE environment framework connected with the World Wide Web

page 3

software components, and to quickly and easily integrate them into
one’s own environment. That’s why reuse works well with routine
libraries which provide low-level facilities, but less well for higher
level facilities.

If a software component doesn't fit the needs of developers, or
leads them to spending too much time understanding it to be able to
effectively adapt it to their needs, they will prefer to rewrite the
component. This applies even if it eventually turns out that it would
have been faster and safer to reuse it.This explains why a component
will be reused only if it is well documented and technically easy to
integrate into different environments. On the one hand, key
information, such as domain, goal, interface, and language, should be
associated with each software component to allow search tools to give
useful responses to queries [8]. On the other hand, standards should
be adopted to facilitate the integration of a component from one
environment to another.

3. Today’s CASE environment framework
technology

In practice, the most important current problem in the CASE
framework technology is the integration of tools and data from
multiple vendors [9]. Integration is needed to build a coherent and
complete environment which can support the entire software
development process. There have been already attempts to build
general CASE framework specifications [11] [12].

This first generation of Integrated Project Support Environment
(IPSE) was not widely adopted by CASE tool vendors [10], even
though construction of the IPSEs was undertaken by large
organizations and could therefore take advantage of important
resources. Indeed IPSE development has been pushed so far that it has
created many difficulties for CASE tool vendors. Yet, the IPSE
approach appears theoretically sound, since it potentially introduces a
virtual operating system that would provide the basic services
required by the tools, an Object Management System (OMS) [15] that
could subsume object databases and file systems, and specifications
describing the services provided by the tools.

Meanwhile, to answer customer demands for more cooperative
tools, CASE tool vendors have had to make trade-offs. So, they have
created coalitions to enable their tools to communicate with each
other and to share data. But, by working in this way, each vendor
reimplements critically important services, such as data and
configuration management in ways that are not usable by other
vendors. Above all, the fact that there does not exist a central entity,
which could manage all the documents, reduces the possibilities of
reuse and traceability.

4. Requirements for a CASE environment
framework
4.1 Basic principles

At a time when more and more people speak about process
definition, process evaluation, and process improvement, especially
for software development companies, we should attempt to apply
these ideas also to the technological transfer area. The Rogers’ social
science theory about the diffusion of innovations [13] is widely
accepted for a while. Raghavan and Chand, in [14], introduced his
work to apply it in software engineering.

The fact that first generation IPSE frameworks are not yet widely
adopted by CASE tool vendors [10] should lead us to propose a more
incremental strategy to introduce such frameworks. These
considerations have led us to adopt some basic principles:

- Since most today’s documents used in software development are
implemented by files, the system must rest on the pre-existing file
systems, instead of hiding the document implementation to the user.
Indeed, systems, as there are often described ones, which rest on an
enormous database where documents are not directly accessible by
the user and his/her tools, since they create their own representation
of them, can’t be quickly and easily installable. (But that doesn’t
mean that they are bad ones!)

- That implies also that the system can’t be responsible for the
links between documents, and delegates that to the documents
themselves, or more exactly, to the tools which create and manage
them.That leads to a kind of “HTML philosophy” where documents
own their links to other documents, thanks to hypertext reference
markups amongst their proper information.

4.2 Documents, document types and document type
definitions

Contemporary operating systems work on files with different
types or formats (such as ASCII or binary). But users actually reason
with documents and document types (such as text, image, data, or
source code). A document is a more abstract notion than a file and
documents can be implemented by several files with different
formats. For instance, the different versions of a document relate to
the same entity and are seen as a whole by the user, even when it is
necessary to view, reuse, or compare old versions of a document. So,
the system should provide users with a more abstract view of their
documents than that given by today's operating systems.
Nevertheless, it should reuse all the repository management facilities
provided, as seen in section 4.1.But, that supposes to have a metadata
base (data about user data) providing a mapping from the documents
to the files.

Just as a file format is well defined, a document type must also be
well defined, and its definition must be accessible, if the document is
to be usable. Furthermore, in section 2.1, we have seen the necessity
for links between elements of different documents. This is the
hypertext technology. But, from the point of view adopted in section
4.1, this need implies that any document type definition should
include hypertext reference markup structures, to signal such cross-
references to a consulting tool. SGML (Standard Generalized Markup
Language) [20] seems a good support for such formal definition, all
the more so since it is now widely used thanks to the success of
HTML [21] (which is actually an instance of SGML since SGML is a
meta-language).

4.3 Internal documentation
Of course users must be able to organize their documents as they

want in folders and subfolders. But, as seen in section 2.2, for both
documents and folders, it is important they are well documented to be
understandable, reengineerable, or reusable. So, for any event, from
their creation to any further modifications, one should be able to
answer these basic questions:

- What action has been performed?
- Why has this action been performed?

A document-centered approach for a CASE environment framework connected with the World Wide Web

page 4

- When?
- By whom?
Example:

- What: creation of a new version of a document.
Why: to fix a bug in inputs/outputs [hypertext reference to

test results].
When: January 14, 1996, 16:06.
By whom: William Herbert [hypertext reference to

addresses].
Furthermore, in most today’s operating systems, documents and

folders are identified only by their names. The names are often short,
personal abbreviations that may not be intelligible to people other
than their owners. The names may be short either because of operating
system restrictions, or because users are trying to save time. But short
names compromise understandability. The goal of a document or a
folder is information that should be made easily available to users as
an important complement of its name. That could constitute a great
help for someone new, for reengineering, or when browsing to find
reusable software components.

Furthermore, as documents or (sub)folders belong to folders, the
information would also be inherited. For instance, if a document is
added in a folder, the folder would register this event in its own
history file.

4.4 Tools, processes, and process monitoring
People use tools to create, consult, edit, analyze, compare and

destroy documents. A document type can be used by a single tool (as
when a vendor tool uses a proprietary format), or by several tool
classes (as when text editor and a compiler operate on the same source
text). The use of a certain tool, on a certain document, at a certain
time, can be part of an overall process. But here we're going to call
process simply the use of a tool.

Some processes can generate new documents: this is the task, for
example, of code generators, report generators, test and case
generators. The system must be aware of those generated documents
to be able to include them automatically into the system. Thus, users
must describe the outputs of every process, their document types, and
how to recognize them. Filename extensions provide an example of a
simple recognition mechanism. A set of document types and
processes and how they are related constitutes a process model that
can be represented by a Data Flow Diagram (DFD). Figure 1 shows a
simplified example of a DFD about LaTeX documents1.

1.emacs is a text editor;latex is a tex file compiler;dvi2ps translates device
independent files to PostScript (trademark of Adobe Systems) files;xdvi dis-
plays dvi files on the screen.

Figure 1

.tex

latex

emacs

.log

.toc

.dvi
xdvi

dvi2ps .ps

As seen in section 4.1, each tool should offer its user the
capability of adding to a document, annotations or references. This
should be done by means of uninterpreted character strings, since the
consulting tool to run, to display a referenced document, and the
protocol to follow, to run it, cannot be known a priori. Indeed, the
consulting tool could be changed during the use of the tools
themselves.But, that supposes the existence of an underlying
communication means, and a communication protocol, between the
tools and a server which would know what to do with those references.

4.5 Integration with the World-Wide Web
Now that network technologies are well known and are widely

used by companies, to present their products or their services, and as
a means of communication, we can imagine that they could be also
used for exchange of higher structured information than simple text
files.

If some standards were widely adopted by the software
development community for software document repositories, some
Internet servers could let people browse through (or just their “public”
part), and even obtain documents (freely or not). As seen in section
2.4, this capability would greatly increase the reuse of software
documents through the whole software community, since their
integration could be carried out automatically.

The availability of such a system would create a virtual world
wide software component market easily accessible. That was one of
the Brooks’ “Silver Bullet” [2] to fight the “essential” difficulties of
software development: buying instead of building.

5. OSDS
5.1 User object classes

The previous discussion brings to light various entities, such as
documents and processes, and the relationships between them. These
ideas have led us to well define basic object classes which would be
manipulated by users. We have considered two different approaches.

The first approach is to allow users to define their own classes
and their relationships. This is the approach adopted in the Object
Management Systems (OMS) [15]. The second approach is to
predefine the classes: this is the solution we have adopted.

Our choice might seem restrictive, but there are two important
reasons for it. OMS are not yet very efficient, although this might be
only a question of time. But, above all, the adoption of the OMS
approach could create compatibility problems between OSDS, and
then avoid reuse possibilities.

Figure 2 describes the main object classes of OSDS and their
relationships.Documents are organized infolders, subfolders, etc. A
document may have severalversions. Each version belongs to a
document type; thus, adocument can haveversions with different

Figure 2

folder document

typeprocess

versionhas

has

has

has

is-defined-by

A document-centered approach for a CASE environment framework connected with the World Wide Web

page 5

document types. Notice that what can be consulted is actually a
version, not adocument. Processes are tied to adocument type, as
methods to a class in the object paradigm. In the current release, a
process is simply a command that a tool can ask the underlying
operating system to execute, but further improvements can be easily
imagined, what would lead to a process-driven environment. Finally,
a document type can be defined (through adocument...) more or less
formally, although a formal definition (e.g. SGML definition [20])
could be used by tools.

Our approach can be compared with that taken by contemporary
operating systems like UNIX1 [16]. The basic classes of an operating
system are also predefined: file, directory, pipe, socket, etc. It is not
only their simplicity but also their generality that gives them their
power and their suppleness. So, OSDS can be seen as a layer on top
of an operating system, just as an operating system is a layer on top of
a processor.

An important feature of OSDS is that each user object owns a
unique identifier or “surrogate” (term first introduced by Hall, Owlett
and Todd in [17]), visible to the user, conversely to most today’s
database management systems. So even if names are used by the user
for ergonomic reasons, they must be further replaced by their
identifiers. This allows us to separate the location of an object from its
identification, contrary to current operating systems, in which an
object is identified by its location (its path) and its name. There are
many advantages to the use of surrogates. For instance, references to
a document are not affected by moving the document from one folder
to another, or by changing the name of the document.

5.2 Tool-system and system-system communication
The classes defined above led us to build our system around a

database of user objects. But the sections 4.4 and 4.5 identify the
needs for a means of and protocol for communication, on the one
hand, locally between a tool and the database, and on the other hand,
through the World-Wide Web, between two OSDS databases.
Consequently, we added to the database manager the capacity to
receive requests or messages, and to broadcast in turn messages to
tools which would be affected by those requests. A similar message
service is provided by the Hewlett Packard’s Softbench environment
[18], but without these database and database management facilities.

Furthermore, a program able to manage a simplified interface
with the OSDS message service, will be also provided to encapsulate
the applications, with which the user is familiar, but which have not
been designed to take advantage of the OSDS facilities. This should
enable the system to get back some control on those applications.

5.3 Code, code dependencies and compilation
Until now, we have spoken about documents without

distinguishing them, but in software industry there are a special kind
of document: the program source, which is the source of all the
problems discussed here!

Code has a special status since it has to be compiled into an
executable program. The modification and restructuring problems
discussed above in section 2.3 suggest the adoption of one document
for each code unit definition (function, class specification, etc.). Our
system, alone, cannot impose such a use on developers. However, the

1. Trademark of Bell Laboratories.

size and the complexity of the dependencies generated by so many
documents must clearly be handled by software.

For this reason, we have built a tool, called Code Integrator (CI),
able to recognize the syntactical structures of a document (for a
specified programming language), determine the dependencies on
other code units (except when there are unresolvable ambiguities),
and separate them into several documents. Then, developers can write
several code units in the same file, but the system will create separate
documents when the file will be incorporated into the system.

The Code Integrator frees users from the responsibility of
specifying dependencies in their programs (“extern” and “#include”
in C/C++, “with” in ADA, etc.), and also in their makefiles [19], since
the dependencies are generated automatically. So, if the user defines
once all the information needed to carry out a compilation, then the
system will be able to do it automatically. For instance, these
information could be: which compiler to use for every language, and
which linker to use to get the executables, all that depending on the
target platforms and other compilation options.

Finally, code units are conceptually organized in an architecture
of modules or classes. In OSDS, modules or classes are simply seen
as special folders grouping several code units. Furthermore, the class
or module interfaces (indeed, there could be several ones, depending
on their purpose: use, development, etc.) can be automatically
generated. Thus, that greatly simplifies the restructuring difficulties
described in section 2.3.

5.4 Integration with the World-Wide Web
In order to be able to access an OSDS through the World-Wide

Web, or to include hypertext references to documents or folders of an
OSDS into any HTML document, we have defined a new data transfer
protocol called ODTP (OSDS Data Transfer Protocol), based on
HTTP (HyperText Transfer Protocol) and FTP (File Transfer
Protocol). So as we make references to HTML documents by, for
instance:

<a href="http2://www.unknown.com3:10004/public/
my_document.html5">,

we can do:
.
From a user point of view, there is only one difference between

the ODTP and HTTP protocols: OSDS objects are identified by an
unique identifier instead of a path and a name, as we explained in
Section 5.1. The communication port number provides for the
identification of several OSDS on a same machine.

If no document identifier is given, the URL (Uniform Resource
Locator) refers to the whole OSDS through which one can browse to
find and retrieve documents. In this order, we have developed an
extension of Mosaic [3]. A mechanism for opening and closing
folders allows users to easily browse through the entire system,
keeping only the parts of interest in view. Furthermore, comments
related to folders or documents, which are given to the system at their
creation (see section 4.3), are displayed automatically to help
understanding the role of the documents.

2. protocol name
3. host machine address
4. communication port number (optional)
5. document identifier

A document-centered approach for a CASE environment framework connected with the World Wide Web

page 6

5.5 Installation
As we have seen, OSDS is composed of a user object database

and its manager which supports remote connections, but the
documents themselves are managed by the underlying operating
system. This organization makes OSDS easy to install and use, and
also simplifies the task of introducing new documents and using
existing tools.

Of course, it may take a certain time to create the database if there
are many already existing documents, because it is necessary to define
the document type of each document. But this process can be partly
automated by the use of tools that use file extensions and user
indications.

6. Conclusion
Tool and data integration are often discussed either too abstractly

or by focusing on some specific mechanism. Here we have presented
a more concrete view centered on the documents involved all along
the software life cycle, the references between elements of different
documents, and the processes associated to the document types.

A review of some difficulties inherent in the management of
those documents has allowed us to define some of the requirements
that a CASE environment should meet. In particular, we think that
such an environment should support different integration level, since
most today's CASE tools are not able of a high level of integration.
Furthermore, to have a chance of being widely used, an environment
framework should be easy to install, improvable, and extendible,
thanks to an open architecture based on the underlying operating
system.

Furthermore, we think that the access to the public part of such
an environment, from the World Wide Web, should be a great help for
increasing the reuse habits through the software development
community. Indeed, it would give more precise and complete
information about the software components and their related
documents than the today's Reusable Software Libraries (RSL), and it
could support an automatic integration from a system to another, thus
providing an important cost and time saving.

Finally, we have described some important features of a CASE
environment framework called Open Software Development System
(OSDS), which answers the defined requirements, and thus, help
resolve the reviewed problems. A first documented version of OSDS
will be released at the end of 1996 as a freeware. Some part of it are
based on the NCSA WWW browser Mosaic [3]. We expect to develop
metrics and to conduct experiments to prove the benefits brought by
this environment. So we will be happy to convince people to adopt it.

7. Acknowledgments
I would like to thank very muchPeter Grogono, from Concordia

University (Montreal, Canada), for his support, his advice and his
great help for the writing of this paper. I would like also thankNazim
Madhavji , from McGill University (Montreal, Canada), for his
knowledge in the software process field.

8. References
[1] Improving Software Productivity; B.W. Boehm; IEEE

Computer, 1987, 20(9):43-57.
[2] No Silver Bullet: Essence and Accidents of Software

Engineering; Frederick P. Brooks; Information Processing’86,

Elsevier Science Publishers B.V., North Holland, 1986, pp. 1069-
1076; or Computer, April 1987, pp. 10-19.

[3] The World-Wide Web; Tim Berners-Lee, Robert Cailliau, Ari
Luotonen, Henrik Frystyk Nielen, Arthur Secret; Communications of
the ACM, August 1994, vol. 37, no. 8, pp. 76-82.

[4] A Discipline of Software Engineering; Watts Humphrey;
Addison Wesley, 1995.

[5] The Software Engineering Laboratory: An Operational
Software Experience Factory; V.R. Basili, G. Caldiera, F. McGarry,
R. Pajersky, G. Page, S. Waligora; Proceedings 14th International
Conference on Software Engineering, Melbourne, Australia, May 11-
15, 1992; IEEE Computer Society Press, May 1992, pp. 370-381.

[6] An Introduction to Information Science; Roger R. Flynn;
Marcel Dekker Inc., 1987.

[7] Support for Comprehensive Reuse; V.R. Basili, H.D.
Rombach; Software Engineering Journal, September 1991, vol. 6, no.
5, pp. 303-316.

[8] Classifying Software for Reusability; R. Prieto-Diaz, Ruben
and Peter Freeman; IEEE Software, January 1987, pp. 6-16.

[9] Past and Future Models of CASE Integration; Alan W.
Brown, Peter H. Feiler, Kurt C. Wallnau; Proceedings 5th
International Workshop on Computer-Aided Software Engineering,
IEEE Computer Society Press, Los Alamitos, California, 1992, pp.
36-45.

[10] Software Engineering Environments, Automated Support for
Software Engineering; Alan W. Brown, Anthony N. Earl, John A.
McDermid; The McGraw-Hill International Series in Software
Engineering, London, 1992, pp. 296-305.

[11] Portable Common Tool Environment (PCTE); Technical
Report ECMA-149, European Computer Manufacturers Association
(ECMA), Geneva, Switzerland, 1990.

[12] CASE Interface Service Base Document; Technical Report
CIS v1.0, Digital Equipment Corporation, 1990.

[13] The Diffusion of Innovations; E.M. Rogers; Free Press, New
York, 1983.

[14] Diffusing Software-Engineering Methods; S.A. Raghavan,
D.R. Chand; IEEE Software, 1989, pp. 81-90.

[15] Object-Oriented Databases: Applications in Software
Engineering; Alan W. Brown; McGraw-Hill International Series in
Software Engineering, 1991.

[16] The UNIX Time-sharing System; D.M. Ritchie, K.
Thompson; Bell Systems Journal, 1975, 57(6):1905-1929.

[17] Relations and Entities; P. Hall, J. Owlett, S. Todd;
Modelling in Database Management Systems, North Holland, 1976,
pp. 1-20.

[18] The H.P. Softbench Environment: An Architecture for a New
Generation of Software Tools; Hewlett Packard Journal 41, 3, June
1990.

[19] Make: A Program for Maintaining Computer Programs; S.I.
Feldman; Bell Laboratories Computing Science Technical Report
#57, 1977; or Software Practice and Experience, 1979, 9:255-265.

[20] SGML Theory and Practice; Gilbert S.K. Wu; British
Library Research and Development Department, London, 1989.

[21] The HTML Sourcebook: A Complete Guide to HTML 3.0;
Ian S. Graham; John Wiley & Sons, New York, 1996.

