Encoding type universes
without using matching modulo
associativity and commutativity

Frédéric Blanqui
Deducteam

r école

nnnnn e
7 supérieure

= 5

EuroProofNet

4 August 2022

Libraries of formal proofs today

LOC Isabelle AFP
3500000

3000000

Library Nb files | Nb objects* S

Coq Opam 16,000 473,000
Isabelle AFP 7,000 90,000 2000000
Lean Mathlib 2,000 81,000 -

Mizar Mathlib 1,400 77,000
HOL-Light 500 35,000 1000000
L M . 500000

* type, definition, theorem, ...
0 _-Il

» Every system has the same basic libraries on arithmetic, lists, ...

> Some definitions/theorems are available in one system only
(odd-order theorem, compcert-C, seL4, perfectoid space, ...)

Can we translate proofs from one system to the other ?

Why?
Avoid duplicating developments and losing time
Facilitate development of new proof systems
Increase reliability of formal proofs (cross-checking)

4

>

>

» Facilitate validation by certification authorities

> Facilitate the choice of a system (school, industry)
>

Provide multi-system data to machine learning

Can we translate proofs from one system to the other ?

Why?
Avoid duplicating developments and losing time
Facilitate development of new proof systems
Increase reliability of formal proofs (cross-checking)

4

>

>

» Facilitate validation by certification authorities

> Facilitate the choice of a system (school, industry)
>

Provide multi-system data to machine learning

Problems:
» Each system is based on different axioms and deduction rules

P It is generally non trivial and sometimes impossible to translate
a proof from one system to the other
(e.g. a classical proof in an intuitionistic system)

How to translate a proof t € A to a proof ue B 7

0. take a logical framework D in which you can encode A and B
so that features common to A and B are encoded identically

system A D(A) D(B) system B

0 0

How to translate a proof t € A to a proof ue B 7

0. take a logical framework D in which you can encode A and B
so that features common to A and B are encoded identically

system A system B

Q%@ OO

1. translate t e Ato t’ € D(A

3. translate v’ € D(B) tou € B

How to translate a proof t € A to a proof ue B 7

. take a logical framework D in which you can encode A and B
so that features common to A and B are encoded identically

system A system B

Q%@ N0

. translate t € Ato t' € D(A
. translate t' € D(A) to v’ € D(B) (if possible)

. translate v/ € D(B) tou € B

Example of logical framework:
the AlN-calculus modulo rewriting (AlN/R)

A simply-typed A-calculus
M dependent types, e.g. B = array(x) for arrays of size x
R identification of types modulo a convergent rewrite system R

terms types
* sort of types [,x:AFt:B TFIx:AB:«x
f global constant TFAx:At:Nx:AB
X local variable '
tu app“cation M=t:Mx: A, B TFu:A
AX i t,u abstraction Ik tu: B{x— u}
Mx:t,u dependent product
t—u abbrev. for INx : t,u N-t:A A=sr B

when x ¢ u N-t¢:B

concat : MNx : N, array(x), My : N, array(y) — array(x + y)
array(2 + 3) =pr array(5)

AM/R in practice: the Dedukti language

functional Pure Type Systems [Cousineau&Dowek, 2007] but also:

FoCalLiZe
Agda /
Matita o TSTP\
HOL Deduktl 1 automated
Lambdapl <— PVS —— provers
IsabeIIe Vampire, E, ...

K

Dedukti is a concrete language for AI1/R
Lambdapi is a proof assistant for Dedukti

On the origin of type theory

solutions proposed to overcome Russell’s paradox in set theory:

P restrict the comprehension scheme

> use “types’ to classify sets

example: in simple type theory

— ur elements are of type ¢

— sets of ur elements are of type t = o

— sets of sets of ur elements are of type (+ — 0) = o

Universes

P a universe U is a set of types closed by exponentiation

AclU BelU
A—BelU

example: the set Uy of the simple types ¢, ¢ — o, ...

P universes are like inaccessible cardinals in set theory:

— an inaccessible cardinal is closed by set exponentiation
— a universe is closed by type exponentiation

More universes

» some math. constructions quantifies over the elements of Uy
= they need to inhabit a new universe Uj containing Uy

> by iteration we get an infinite sequence of nested universes
UelU e...Ue U,'+1...

Ac U, Bel
A— Be Umax(i,j)

available in some proof assistants like Coq, Agda, Lean

Universe polymorphism

some proof assistants go further: fixed universe levels 0,1, ...
are replaced by open terms of the max-successor algebra L :

t,tu=xeV|z|st|tUu

and universes having equivalent levels are identified:

t>~,u
UtEUu

where t ~, u iff, for all valuation p: V — N, [t], = [u].

sym | []
0

s +1

L max

Problem: how to decide ~ |in| AM/R ?

~ is decidable (it is in Presburger arithmetic)

but can we find:

— a Al signature -

— a convergent rewrite system R on X
— an encoding function || : £ — AM/R

such that:

t~pu Wff [t =% R |ul ?

Problem: how to decide ~ |in| AM/R ?

~ is decidable (it is in Presburger arithmetic)

but can we find:

— a Al signature -

— a convergent rewrite system R on X
— an encoding function || : £ — AM/R

such that:
t~pu Wff [t =% R |ul ?
problem:
(xUy)Uz =~y xU(yUz)
xUdy =~ yUx
x U skx ~r skx
where s%x = x and skT1x = s(sx)

Rewrite system on |closed | levels/natural numbers N

the previous equations are satisfied on closed terms by taking:

x| type [[]
Oy N 0
Sy N—N +1
@GN X N — Nimax

pdOy <= p
On®dg — ¢q
sxp@sng — su(p®q)

Rewrite system on |closed | levels/natural numbers N

the previous equations are satisfied on closed terms by taking:

Y| type |[] POy

0 N 0
. On®dg — ¢q

sy NN syp®s — sy(p@q)
®[N x N — N|max NPLENg NP

Y| type |[1 On+q
+|NXxXN—N|+ snp+q

USRS

su(p+q)

Canonical forms
every level t with variables x; <... <x, has:
» a unique AC-canonical form t ¢
t ~ac uiff tlac = ulac

assuming a total order on variables and terms (e.g. LPO)

let t Y uiff u=tlac

Canonical forms

every level t with variables x; <... <x, has:

» a unique AC-canonical form t ¢

t ~ac uiff tlac = ulac

assuming a total order on variables and terms (e.g. LPO)

let t Y uiff u=tlac

» a unique L-canonical form

shoz L (shxg U (... s%x,)...) with ko > ki, . ..

where s%x = x and skT1x = s(sx)

s kn

Solution using rewriting with matching modulo AC
[Genestier, FSCD 2020]

te~pu x| = x
. |z| =m00
oo st| =m(s0)(a(s0)]t])
[t] =R,ac ~ac <rac lul 1LV =m0 ((20]u]) U (20|v])
m0(alx) — x
> type | [] mp(ag(mrX)) < m(p®(q+r))(AgX)
BIUCE S LMo ap((ag(arX)UY) < m(p (a1 0)(RaX)0Y
E —00
ApdD — @
alNxL—=El + Ap(agx) — a(p+q)x
AINXE—E| + Ap(XUY) <= (ApX)U(ApY)
U|E X E — E{max XUl < X
with U AC (apx)U(agx) < a(p®q)x

example: if p > q,r then |sPzU (s9xUs"y)| =" mp(agxUary)

Solution using rewriting with matching modulo AC

— matching modulo AC is NP-complete
— it doubles the size of the code [Férey, 2020]

— data structures for handling AC symbols efficiently do not
combine very well with those for S-reduction and type checking

Contribution: a solution not using matching modulo AC

Thm: t~ u iff [t] She (Dr=Uc) (FhceRr)" <uc Ul

|X| =S0xUS0z we replace every s by S(SO) and

2| =502 every x € VU {z} by S0x U S0z
[st] =5(s0) (Skx is like s¥x)
lubv] = JulU]v]
Y| type |[1] Sp(Sqgx) — S(p+q)x
z L 0 Sp(xUy) < SpxUSpy
SINXL—L| + SpxUSgx — S(pdq)x
U LxL—L|max| SpxU (SgxUy) — S(pdqg)xUy

non-linear equations are handled using any term ordering such
that Spx < Sqy iff x < y orelse x =y and p < g (LPO):

ex: Spx LI (Sry LUSgx) <>ac Spx L (SqxLISry) <»x S(p@® q)xUSry

Properties of <}

> °_>R°_>!AC terminates

Proof: (—>R‘—>!AC is included in </ 4c which can be proved
terminating automatically by e.g. AProVE using polynomial
interpretations checked by CeTA.

Properties of <}

guarded = every occurrence of x € V U {z} is in a subterm Spx
(ensured by the encoding and preserved by the rewrite rules)

> —rruc is locally confluent
on AC-canonical guarded terms with no variables of sort N

Proof. By hand. 10 critical pairs.
Joinability requires associativity and commutativity of + and @
and distributivity of + over @, which holds on closed terms of N.

Implementation of AC-canonization in Lambdapi
using construction functions
https://github.com/Deducteam/lambdapi

following:

“On the implementation of construction functions for non-free
concrete data types”, with T. Hardin and P. Weis (ESOP 2007)

— AC-canonization is transparent since it is done at term
construction time

— does not change the size of the code

https://github.com/Deducteam/lambdapi

Implementation of AC-canonization in Lambdapi
using construction functions
https://github.com/Deducteam/lambdapi

following:

“On the implementation of construction functions for non-free
concrete data types”, with T. Hardin and P. Weis (ESOP 2007)

— AC-canonization is transparent since it is done at term
construction time

— does not change the size of the code

Thank you! Questions?

https://github.com/Deducteam/lambdapi

