
Encoding type universes
without using matching modulo

associativity and commutativity

Frédéric Blanqui

Deduc`eam

EuroProofNet

4 August 2022

Libraries of formal proofs today

Library Nb files Nb objects∗

Coq Opam 16,000 473,000
Isabelle AFP 7,000 90,000
Lean Mathlib 2,000 81,000
Mizar Mathlib 1,400 77,000

HOL-Light 500 35,000
.

LOC Isabelle AFP

∗ type, definition, theorem, . . .

I Every system has the same basic libraries on arithmetic, lists, . . .

I Some definitions/theorems are available in one system only
(odd-order theorem, compcert-C, seL4, perfectoid space, . . .)

Can we translate proofs from one system to the other ?

Why?

I Avoid duplicating developments and losing time

I Facilitate development of new proof systems

I Increase reliability of formal proofs (cross-checking)

I Facilitate validation by certification authorities

I Facilitate the choice of a system (school, industry)

I Provide multi-system data to machine learning

Problems:

I Each system is based on different axioms and deduction rules

I It is generally non trivial and sometimes impossible to translate
a proof from one system to the other
(e.g. a classical proof in an intuitionistic system)

Can we translate proofs from one system to the other ?

Why?

I Avoid duplicating developments and losing time

I Facilitate development of new proof systems

I Increase reliability of formal proofs (cross-checking)

I Facilitate validation by certification authorities

I Facilitate the choice of a system (school, industry)

I Provide multi-system data to machine learning

Problems:

I Each system is based on different axioms and deduction rules

I It is generally non trivial and sometimes impossible to translate
a proof from one system to the other
(e.g. a classical proof in an intuitionistic system)

How to translate a proof t ∈ A to a proof u ∈ B ?

0. take a logical framework D in which you can encode A and B
so that features common to A and B are encoded identically

t

system A

u

system BD(A) D(B)

t’
1

u’
32

1. translate t ∈ A to t ′ ∈ D(A)

2. translate t ′ ∈ D(A) to u′ ∈ D(B) (if possible)

3. translate u′ ∈ D(B) to u ∈ B

How to translate a proof t ∈ A to a proof u ∈ B ?

0. take a logical framework D in which you can encode A and B
so that features common to A and B are encoded identically

t

system A

u

system BD(A) D(B)

t’
1

u’
3

2

1. translate t ∈ A to t ′ ∈ D(A)

2. translate t ′ ∈ D(A) to u′ ∈ D(B) (if possible)

3. translate u′ ∈ D(B) to u ∈ B

How to translate a proof t ∈ A to a proof u ∈ B ?

0. take a logical framework D in which you can encode A and B
so that features common to A and B are encoded identically

t

system A

u

system BD(A) D(B)

t’
1

u’
32

1. translate t ∈ A to t ′ ∈ D(A)

2. translate t ′ ∈ D(A) to u′ ∈ D(B) (if possible)

3. translate u′ ∈ D(B) to u ∈ B

Example of logical framework:
the λΠ-calculus modulo rewriting (λΠ/R)

λ simply-typed λ-calculus
Π dependent types, e.g. B = array(x) for arrays of size x
R identification of types modulo a convergent rewrite system R

terms

? sort of types
f global constant
x local variable
tu application
λx : t, u abstraction
Πx : t, u dependent product
t → u abbrev. for Πx : t, u

when x /∈ u

types

Γ, x : A ` t : B Γ ` Πx : A,B : ?

Γ ` λx : A, t : Πx : A,B

Γ ` t : Πx : A,B Γ ` u : A

Γ ` tu : B{x 7→ u}

Γ ` t : A A ≡βR B

Γ ` t : B
. . .

concat : Πx : N, array(x),Πy : N, array(y)→ array(x + y)
array(2 + 3) ≡βR array(5)

λΠ/R in practice: the Dedukti language

functional Pure Type Systems [Cousineau&Dowek, 2007] but also:

Dedukti

K

Isabelle

HOL

Matita

Agda
Coq

FoCaLiZe

Zenon
ArchSAT TSTP

Lambdapi PVS

automated
provers

Vampire, E, . . .

Dedukti is a concrete language for λΠ/R
Lambdapi is a proof assistant for Dedukti

On the origin of type theory

solutions proposed to overcome Russell’s paradox in set theory:

I restrict the comprehension scheme

I use “types” to classify sets

example: in simple type theory

– ur elements are of type ι
– sets of ur elements are of type ι→ o
– sets of sets of ur elements are of type (ι→ o)→ o
– . . .

Universes

I a universe U is a set of types closed by exponentiation

A ∈ U B ∈ U

A→ B ∈ U

example: the set U0 of the simple types ι, ι→ o, . . .

I universes are like inaccessible cardinals in set theory:

– an inaccessible cardinal is closed by set exponentiation
– a universe is closed by type exponentiation

More universes

I some math. constructions quantifies over the elements of U0

⇒ they need to inhabit a new universe U1 containing U0

I by iteration we get an infinite sequence of nested universes

U0 ∈ U1 ∈ . . .Ui ∈ Ui+1 . . .

A ∈ Ui B ∈ Uj

A→ B ∈ Umax(i ,j)

available in some proof assistants like Coq, Agda, Lean

Universe polymorphism

some proof assistants go further: fixed universe levels 0, 1, . . .
are replaced by open terms of the max-successor algebra L :

t, u = x ∈ V | z | s t | t t u

and universes having equivalent levels are identified:

t 'L u

Ut ≡ Uu

where t 'L u iff, for all valuation µ : V → N, [[t]]µ = [[u]]µ

sym [[]]

z 0
s +1
t max

Problem: how to decide 'L in λΠ/R ?

'L is decidable (it is in Presburger arithmetic)

but can we find:

– a λΠ signature Σ

– a convergent rewrite system R on Σ

– an encoding function | | : L → λΠ/R

such that:

t 'L u iff |t| ↪→∗R ∗R←↩ |u| ?

problem:
(x t y) t z 'L x t (y t z)

x t y 'L y t x
x t skx 'L skx

where s0x = x and sk+1x = s(skx)

Problem: how to decide 'L in λΠ/R ?

'L is decidable (it is in Presburger arithmetic)

but can we find:

– a λΠ signature Σ

– a convergent rewrite system R on Σ

– an encoding function | | : L → λΠ/R

such that:

t 'L u iff |t| ↪→∗R ∗R←↩ |u| ?

problem:
(x t y) t z 'L x t (y t z)

x t y 'L y t x
x t skx 'L skx

where s0x = x and sk+1x = s(skx)

Rewrite system on closed levels/natural numbers N

the previous equations are satisfied on closed terms by taking:

Σ type [[]]

0N N 0
sN N→ N +1
⊕ N× N→ N max

p ⊕ 0N ↪→ p
0N ⊕ q ↪→ q

sN p ⊕ sN q ↪→ sN (p ⊕ q)

Σ type [[]]

+ N× N→ N +
0N + q ↪→ q

sN p + q ↪→ sN (p + q)

Rewrite system on closed levels/natural numbers N

the previous equations are satisfied on closed terms by taking:

Σ type [[]]

0N N 0
sN N→ N +1
⊕ N× N→ N max

p ⊕ 0N ↪→ p
0N ⊕ q ↪→ q

sN p ⊕ sN q ↪→ sN (p ⊕ q)

Σ type [[]]

+ N× N→ N +
0N + q ↪→ q

sN p + q ↪→ sN (p + q)

Canonical forms

every level t with variables x1<...<xn has:

I a unique AC-canonical form t ↓AC

t 'AC u iff t ↓AC = u ↓AC

assuming a total order on variables and terms (e.g. LPO)

let t ↪→!
AC u iff u = t ↓AC

I a unique L-canonical form

sk0z t (sk1x1 t (. . . sknxn) . . .) with k0 ≥ k1, . . . , kn

where s0x = x and sk+1x = s(skx)

Canonical forms

every level t with variables x1<...<xn has:

I a unique AC-canonical form t ↓AC

t 'AC u iff t ↓AC = u ↓AC

assuming a total order on variables and terms (e.g. LPO)

let t ↪→!
AC u iff u = t ↓AC

I a unique L-canonical form

sk0z t (sk1x1 t (. . . sknxn) . . .) with k0 ≥ k1, . . . , kn

where s0x = x and sk+1x = s(skx)

Solution using rewriting with matching modulo AC
[Genestier, FSCD 2020]

t 'L u

iff
|t| ↪→∗R,AC 'AC←↩∗R,AC |u|

|x | = x
|z| = m 0 ∅
|s t| = m (s 0) (a (s 0) |t|)

|u t v | = m 0 ((a 0 |u|) ∪ (a 0 |v |))

Σ type [[]]

m N× E→ L max

∅ E −∞
a N× L→ E +
A N× E→ E +
∪ E× E→ E max

with ∪ AC

m 0 (a 0 x) ↪→ x
m p (a q (m r X)) ↪→ m (p ⊕ (q + r)) (A q X)

m p ((a q (m r X)) ∪ Y) ↪→ m (p ⊕ (q + r)) ((A q X) ∪ Y)

A p ∅ ↪→ ∅
A p (a q x) ↪→ a (p + q) x

A p (X ∪ Y) ↪→ (A p X) ∪ (A p Y)

X ∪ ∅ ↪→ X
(a p x) ∪ (a q x) ↪→ a (p ⊕ q) x

example: if p ≥ q, r then |spz t (sqx t sry)| ↪→∗ m p (a q x ∪ a r y)

Solution using rewriting with matching modulo AC

– matching modulo AC is NP-complete

– it doubles the size of the code [Férey, 2020]

– data structures for handling AC symbols efficiently do not
combine very well with those for β-reduction and type checking

Contribution: a solution not using matching modulo AC

Thm: t 'L u iff |t| ↪→!
AC (↪→R↪→!

AC)∗ (←↩!AC←↩R)∗ ←↩!AC |u|

|x | = S 0 x t S 0 z
|z| = S 0 z
|s t| = S (s 0) |t|

|u t v | = |u| t |v |

we replace every s by S(s0) and
every x ∈ V ∪ {z} by S0x ∪ S0z

(Skx is like skx)

Σ type [[]]

z L 0
S N× L→ L +
t L× L→ L max

S p (S q x) ↪→ S (p + q) x
S p (x t y) ↪→ S p x t S p y

S p x t S q x ↪→ S (p ⊕ q) x
S p x t (S q x t y) ↪→ S (p ⊕ q) x t y

non-linear equations are handled using any term ordering such
that Spx ≤ Sqy iff x < y or else x = y and p ≤ q (LPO):

ex: Spx t (Sry t Sqx) ↪→!
AC Spx t (Sqx t Sry) ↪→R S(p⊕ q)x t Sry

Properties of ↪→R↪→!
AC

I ↪→R↪→!
AC terminates

Proof: ↪→R↪→!
AC is included in ↪→R/AC which can be proved

terminating automatically by e.g. AProVE using polynomial
interpretations checked by CeTA.

Properties of ↪→R↪→!
AC

guarded = every occurrence of x ∈ V ∪ {z} is in a subterm S p x
(ensured by the encoding and preserved by the rewrite rules)

I ↪→R↪→!
AC is locally confluent

on AC-canonical guarded terms with no variables of sort N

Proof. By hand. 10 critical pairs.
Joinability requires associativity and commutativity of + and ⊕
and distributivity of + over ⊕, which holds on closed terms of N.

Implementation of AC-canonization in Lambdapi
using construction functions

https://github.com/Deducteam/lambdapi

following:

“On the implementation of construction functions for non-free
concrete data types”, with T. Hardin and P. Weis (ESOP 2007)

– AC-canonization is transparent since it is done at term
construction time

– does not change the size of the code

Thank you! Questions?

https://github.com/Deducteam/lambdapi

Implementation of AC-canonization in Lambdapi
using construction functions

https://github.com/Deducteam/lambdapi

following:

“On the implementation of construction functions for non-free
concrete data types”, with T. Hardin and P. Weis (ESOP 2007)

– AC-canonization is transparent since it is done at term
construction time

– does not change the size of the code

Thank you! Questions?

https://github.com/Deducteam/lambdapi

