Encoding type universes without using matching modulo associativity and commutativity

Frédéric Blanqui

Deduc⊢eam

EuroProofNet

4 August 2022

Libraries of formal proofs today

- Every system has the same basic libraries on arithmetic, lists, ...
- Some definitions/theorems are available in one system only (odd-order theorem, compcert-C, seL4, perfectoid space, ...)

Can we translate proofs from one system to the other ?

Why?

- Avoid duplicating developments and losing time
- Facilitate development of new proof systems
- Increase reliability of formal proofs (cross-checking)
- Facilitate validation by certification authorities
- Facilitate the choice of a system (school, industry)
- Provide multi-system data to machine learning

Can we translate proofs from one system to the other ?

Why?

- Avoid duplicating developments and losing time
- Facilitate development of new proof systems
- Increase reliability of formal proofs (cross-checking)
- Facilitate validation by certification authorities
- Facilitate the choice of a system (school, industry)
- Provide multi-system data to machine learning

Problems:

- Each system is based on different axioms and deduction rules
- It is generally non trivial and sometimes impossible to translate a proof from one system to the other (e.g. a classical proof in an intuitionistic system)

How to translate a proof $t \in A$ to a proof $u \in B$?

0. take a logical framework *D* in which you can encode *A* and *B* so that features common to *A* and *B* are encoded identically

How to translate a proof $t \in A$ to a proof $u \in B$?

0. take a logical framework *D* in which you can encode *A* and *B* so that features common to *A* and *B* are encoded identically

1. translate $t \in A$ to $t' \in D(A)$

3. translate $u' \in D(B)$ to $u \in B$

How to translate a proof $t \in A$ to a proof $u \in B$?

0. take a logical framework *D* in which you can encode *A* and *B* so that features common to *A* and *B* are encoded identically

- 1. translate $t \in A$ to $t' \in D(A)$
- 2. translate $t' \in D(A)$ to $u' \in D(B)$ (if possible)
- 3. translate $u' \in D(B)$ to $u \in B$

Example of logical framework: the $\lambda\Pi$ -calculus modulo rewriting $(\lambda\Pi/\mathcal{R})$

λ simply-typed λ-calculus Π dependent types, e.g. B = array(x) for arrays of size x \mathcal{R} identification of types modulo a *convergent* rewrite system \mathcal{R}

terms

types

*	sort of types	$\Gamma, x : A \vdash t : B \Gamma \vdash \Pi x : A, B : \star$
f	global constant	$\Gamma \vdash \lambda x : A, t : \Pi x : A, B$
x	local variable	, , ,
tu	application	$\Gamma \vdash t : \Pi x : A, B \Gamma \vdash u : A$
$\lambda x: t, u$	abstraction	$\Gamma \vdash tu : B\{x \mapsto u\}$
$\Pi x : t, u$	dependent product	
t ightarrow u	abbrev. for $\Pi x : t, u$	$\frac{\Gamma \vdash t : A A \equiv_{\beta \mathcal{R}} B}{\beta \mathcal{R}}$
	when $x \notin u$	$\Gamma \vdash t : B$

concat : Πx : \mathbb{N} , array(x), Πy : \mathbb{N} , array $(y) \rightarrow array(x + y)$ array $(2 + 3) \equiv_{\beta \mathcal{R}} array(5)$

$\lambda \Pi / \mathcal{R}$ in practice: the Dedukti language

functional Pure Type Systems [Cousineau&Dowek, 2007] but also:

Dedukti is a concrete language for $\lambda \Pi / \mathcal{R}$ Lambdapi is a proof assistant for Dedukti

On the origin of type theory

solutions proposed to overcome Russell's paradox in set theory:

- restrict the comprehension scheme
- use "types" to classify sets

example: in simple type theory

- ur elements are of type ι
- sets of ur elements are of type $\iota \to o$
- sets of sets of ur elements are of type $(\iota
 ightarrow o)
 ightarrow o$

- . . .

Universes

a universe U is a set of types closed by exponentiation

$$\frac{A \in U \quad B \in U}{A \to B \in U}$$

example: the set U_0 of the simple types $\iota, \iota \rightarrow o, \ldots$

universes are like inaccessible cardinals in set theory:

- an inaccessible cardinal is closed by set exponentiation
- a universe is closed by type exponentiation

More universes

- ▶ some math. constructions quantifies over the elements of U_0 ⇒ they need to inhabit a new universe U_1 containing U_0
- by iteration we get an infinite sequence of nested universes

$$U_0 \in U_1 \in \dots U_i \in U_{i+1} \dots$$
$$\frac{A \in U_i \quad B \in U_j}{A \to B \in U_{\max(i,j)}}$$

available in some proof assistants like Coq, Agda, Lean

Universe polymorphism

some proof assistants go further: fixed universe levels $0, 1, \ldots$ are replaced by *open* terms of the **max-successor algebra** \mathcal{L} :

 $t, u = x \in \mathcal{V} \mid z \mid s t \mid t \sqcup u$

and universes having equivalent levels are identified:

$$\frac{t \simeq_{\mathcal{L}} u}{U_t \equiv U_u}$$

where $t \simeq_{\mathcal{L}} u$ iff, for all valuation $\mu : \mathcal{V} \to \mathbb{N}$, $\llbracket t \rrbracket_{\mu} = \llbracket u \rrbracket_{\mu}$

sym	
z	0
s	+1
	max

Problem: how to decide $\simeq_{\mathcal{L}}$ in $\lambda \Pi / \mathcal{R}$?

 $\simeq_{\mathcal{L}}$ is decidable (it is in Presburger arithmetic)

but can we find:

- a $\lambda\Pi$ signature Σ
- a convergent rewrite system ${\mathcal R}$ on Σ
- an encoding function $|_{\mbox{-}}|: \mathcal{L} \to \lambda \Pi / \mathcal{R}$

such that:

$$t \simeq_{\mathcal{L}} u \quad \text{iff} \quad |t| \hookrightarrow_{\mathcal{R}}^* {}^*_{\mathcal{R}} \longleftrightarrow |u| ?$$

Problem: how to decide $\simeq_{\mathcal{L}}$ in $\lambda \Pi / \mathcal{R}$?

 $\simeq_{\mathcal{L}}$ is decidable (it is in Presburger arithmetic)

but can we find:

- a $\lambda\Pi$ signature Σ
- a convergent rewrite system ${\mathcal R}$ on Σ
- an encoding function $|_{\mbox{-}}|: \mathcal{L} \to \lambda \Pi / \mathcal{R}$

such that:

$$t \simeq_{\mathcal{L}} u \quad \text{iff} \quad |t| \hookrightarrow_{\mathcal{R}}^* {}_{\mathcal{R}}^* \hookrightarrow |u| ?$$

problem:

$$\begin{array}{rcl} (x \sqcup y) \sqcup z & \simeq_{\mathcal{L}} & x \sqcup (y \sqcup z) \\ & x \sqcup y & \simeq_{\mathcal{L}} & y \sqcup x \\ & x \sqcup \mathbf{s}^{k} x & \simeq_{\mathcal{L}} & \mathbf{s}^{k} x \end{array}$$

where $s^0 x = x$ and $s^{k+1} x = s(s^k x)$

Rewrite system on closed levels/natural numbers N

the previous equations are satisfied on closed terms by taking:

Rewrite system on closed levels/natural numbers N

the previous equations are satisfied on closed terms by taking:

Canonical forms

every level *t* with variables $x_1 < ... < x_n$ has:

▶ a unique **AC**-canonical form $t\downarrow_{AC}$

 $t \simeq_{AC} u$ iff $t \downarrow_{AC} = u \downarrow_{AC}$

assuming a total order on variables and terms (e.g. LPO) let $t \hookrightarrow_{AC}^{!} u$ iff $u = t \downarrow_{AC}$

Canonical forms

every level *t* with variables $x_1 < ... < x_n$ has:

▶ a unique **AC**-canonical form $t\downarrow_{AC}$

 $t \simeq_{AC} u$ iff $t \downarrow_{AC} = u \downarrow_{AC}$

assuming a total order on variables and terms (e.g. LPO) let $t \hookrightarrow_{AC}^! u$ iff $u = t \downarrow_{AC}$

► a unique *L*-canonical form

 $\mathbf{s}^{k_0}\mathbf{z} \sqcup (\mathbf{s}^{k_1}x_1 \sqcup (\dots \mathbf{s}^{k_n}x_n)\dots)$ with $k_0 \ge k_1, \dots, k_n$

where $s^0 x = x$ and $s^{k+1} x = s(s^k x)$

Solution using rewriting with matching modulo AC [Genestier, FSCD 2020]

$$\begin{array}{ccccc} t \simeq_{\mathcal{L}} u & |x| = x \\ & |z| = m 0 \emptyset \\ & \text{iff} & |st| = m (s 0) (a (s 0) |t|) \\ & |t| \hookrightarrow_{\mathcal{R}, AC}^{*} \simeq_{AC} \longleftrightarrow_{\mathcal{R}, AC}^{*} |u| & |u \sqcup v| = m 0 ((a 0 |u|) \cup (a 0 |v|)) \end{array}$$

$$\begin{array}{ccccc} & \sum_{\mathcal{R}, AC} & \sum_{\mathcal{R}, AC} |u| & |u \sqcup v| = m 0 ((a 0 |u|) \cup (a 0 |v|)) \\ & \sum_{\mathcal{R}, AC} & \sum_{\mathcal{R}, AC} & \sum_{\mathcal{R}, AC} |u| & |u \sqcup v| = m 0 ((a 0 |u|) \cup (a 0 |v|)) \end{array}$$

$$\begin{array}{ccccc} & \sum_{\mathcal{R}, AC} & \sum_{\mathcal{R}, AC} & \sum_{\mathcal{R}, AC} |u| & |u \sqcup v| = m 0 ((a 0 |u|) \cup (a 0 |v|)) \\ & \sum_{\mathcal{R}, AC} & \sum_{\mathcal{R}, AC} & \sum_{\mathcal{R}, AC} & \sum_{\mathcal{R}, AC} |u| & |u \sqcup v| = m 0 ((a 0 |u|) \cup (a 0 |v|)) \end{array}$$

$$\begin{array}{ccccc} & \sum_{\mathcal{R}, AC} & \sum_{\mathcal{$$

example: if $p \ge q, r$ then $|\mathbf{s}^p \mathbf{z} \sqcup (\mathbf{s}^q \mathbf{x} \sqcup \mathbf{s}^r \mathbf{y})| \hookrightarrow^* \mathbf{m} p(\mathbf{a} q \mathbf{x} \cup \mathbf{a} r \mathbf{y})$

Solution using rewriting with matching modulo AC

- matching modulo AC is NP-complete
- it doubles the size of the code [Férey, 2020]
- data structures for handling AC symbols efficiently do not combine very well with those for β -reduction and type checking

Contribution: a solution not using matching modulo AC Thm: $t \simeq_{\mathcal{L}} u$ iff $|t| \hookrightarrow_{AC}^{!} (\hookrightarrow_{\mathcal{R}} \hookrightarrow_{AC}^{!})^{*} (\hookrightarrow_{AC}^{!} \leftrightarrow_{AC}^{!})^{*} \leftrightarrow_{AC}^{!} |u|$

$$|x| = S 0 x \sqcup S 0 z$$
$$|z| = S 0 z$$
$$|s t| = S (s 0) |t|$$
$$|u \sqcup v| = |u| \sqcup |v|$$

we replace every s by S(s0) and every $x \in \mathcal{V} \cup \{z\}$ by $S0x \cup S0z$ $(Skx \text{ is like } s^kx)$

non-linear equations are handled using any term ordering such that $Spx \leq Sqy$ iff x < y or else x = y and $p \leq q$ (LPO):

ex: $\operatorname{Spx} \sqcup (\operatorname{Sry} \sqcup \operatorname{Sqx}) \hookrightarrow_{AC}^{!} \operatorname{Spx} \sqcup (\operatorname{Sqx} \sqcup \operatorname{Sry}) \hookrightarrow_{\mathcal{R}} \operatorname{S}(p \oplus q) \times \sqcup \operatorname{Sry}$

Properties of $\hookrightarrow_{\mathcal{R}} \hookrightarrow_{\mathcal{AC}}^!$

$\blacktriangleright \hookrightarrow_{\mathcal{R}} \hookrightarrow_{\mathcal{AC}}^! \text{ terminates}$

Proof: $\hookrightarrow_{\mathcal{R}} \hookrightarrow_{\mathcal{AC}}^!$ is included in $\hookrightarrow_{\mathcal{R}/\mathcal{AC}}$ which can be proved terminating automatically by e.g. AProVE using polynomial interpretations checked by CeTA.

Properties of $\hookrightarrow_{\mathcal{R}} \hookrightarrow_{\mathcal{AC}}^!$

guarded = every occurrence of $x \in \mathcal{V} \cup \{z\}$ is in a subterm S px (ensured by the encoding and preserved by the rewrite rules)

► ⇔_R⇔[!]_{AC} is locally confluent on AC-canonical guarded terms with no variables of sort N

Proof. By hand. 10 critical pairs. Joinability requires associativity and commutativity of + and \oplus and distributivity of + over \oplus , which holds on closed terms of N.

Implementation of AC-canonization in Lambdapi using construction functions https://github.com/Deducteam/lambdapi

following:

"On the implementation of construction functions for non-free concrete data types", with T. Hardin and P. Weis (ESOP 2007)

- AC-canonization is transparent since it is done at term construction time
- does not change the size of the code

Implementation of AC-canonization in Lambdapi using construction functions https://github.com/Deducteam/lambdapi

following:

"On the implementation of construction functions for non-free concrete data types", with T. Hardin and P. Weis (ESOP 2007)

- AC-canonization is transparent since it is done at term construction time
- does not change the size of the code

Thank you! Questions?