
Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Computability Closure: the Swiss knife of
higher-order termination

Frédéric Blanqui

28 May 2012

Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Rewriting

rewriting is a simple yet general framework for defining functions
and proving equalities on terms based on the following notions:

I a rewrite rule is a pair of terms l → r
I a substitution σ is a map from variables to terms
I a term t matches another term l if t = lσ

t →R u if ∃p, ∃σ, ∃l → r ∈ R, t|p = lσ and u = t[rσ]p

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Higher-order rewriting

higher-order rewriting is rewriting on λ-terms (Church 1940)

f | x | λxt | tu

there are various approaches:

I Combinatory Reduction Systems (CRS) (Klop 1980)
I Expression Reduction Systems (ERS) (Khasidashvili 1990)
I Higher-order Rewrite Systems (HRS) (Nipkow 1991)

I simply-typed λ-terms in β-normal η-long form
I matching modulo αβη

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Higher-order rewriting

I Higher-order Algebraic Specification Languages (HOASL)
(Jouannaud-Okada 1991)
I arbitrary terms
I matching modulo α

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Problem

how to prove the termination of →R or →β ∪ →R?

in the simply-typed λ-calculus:

I →β can be proved terminating by a direct induction on the type
of the substituted variable (Sanchis 1967, van Daalen 1980)
this does not extend to rewriting since, in this case, the type of
substituted variables can increase

I λI -terms can be interpreted by hereditarily monotone functions
on N (Gandy 1980)
this can be used to build interpretations (van de Pol 1996,
Hamana 2006) but these interpretations can also be obtained
from an extended computability proof

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Outline

Computability

Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Revisiting (HO)RPO

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Computability

computability has been introduced for proving termination of
β-reduction, i.e. substitution, in typed λ-calculi by William Walker
Tait (1967) and Jean-Yves Girard (1970)

I every type T is mapped to a set [[T]] of computable terms

I every t : T is proved to be computable, i.e. t ∈ [[T]]

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Computability predicates

there are different definitions of computability
(Tait, Girard, Parigot) but Girard’s definition Red
is better suited for arbitrary rewriting

Let Red be the set of P such that:

I P ⊆ SN(→β)

I →β (P) ⊆ P

I if t is neutral and →β (t) ⊆ P then t ∈ P

t cannot be head-reduced when applied (e.g. λxu is not neutral)

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Computable terms

Red is a complete lattice for set inclusion closed by:

a(P,Q) = {t | ∀u ∈ P, tu ∈ Q}

by taking [[U ⇒ V]] := a([[U]], [[V]]), a term t : U ⇒ V is
computable if, for every computable u : U, tu is computable

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Application to rewriting (Jouannaud-Okada 1991)

Given a set R of rewrite rules, let → =→β ∪→R and RedR be
the set of P such that:

I P ⊆ SN(→)

I →(P) ⊆ P

I if t is neutral and → (t) ⊆ P then t ∈ P
f~t is neutral if |~t| ≥ sup{|~l | | f~l → r ∈ R}

Theorem: Given a set R of rules, the relation →β ∪ →R
terminates if every rule of R is of the form f~l → r with
r ∈ CCR,f(~l), where CCR,f(~l) is a set of terms R-computable

whenever ~l so are.

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Computability closure

By what operation CCR,f(~l) can be closed?

(arg) li ∈ CCR,f(~l)

(app)
t : U ⇒ V ∈ CCR,f(~l) u : U ∈ CCR,f(~l)

tu ∈ CCR,f(~l)

(red)
t ∈ CCR,f(~l) t →β ∪ →R t ′

t ′ ∈ CCR,f(~l)

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Dealing with bound variables

Annotate CCR,f(~l) with a set X of (bound) variables:

(var)
x ∈ X

x ∈ CCX
R,f(

~l)

(lam)
t ∈ CC

X∪{x}
R,f (~l) x /∈ FV(~l)

λxt ∈ CCX
R,f(

~l)

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Dealing with subterms

Problem: computability is not preserved by subterm. . . :-(

Example: with c : (B⇒ A)⇒ B and f : B⇒ (B⇒ A), →β ∪→R
with R = {f(cx)→ x} does not terminate (Mendler 1987)

with w = λx fxx : B⇒ A, w(cw)→β f(cw)(cw)→R w(cw)

⇒ restrictions on subterms (based on types) are necessary:

(sub-app-fun)
g~t ∈ CCX

R,f(
~l) g : ~T ⇒ B Pos(B,Ti) ⊆ Pos+(Ti)

ti ∈ CCX
R,f(

~l)

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Dealing with subterms

(sub-app-var-l)
tu ∈ CCX

R,f(
~l) u ↓η ∈ X

t ∈ CCX
f (~l)

(sub-app-var-r)
tu ∈ CCX

R,f(
~l) t ↓η ∈ X t : U ⇒ ~U ⇒ U

u ∈ CCX
f (~l)

(sub-lam)
λxt ∈ CCX

R,f(
~l) x /∈ FV(~l)

t ∈ CC
X∪{x}
R,f (~l)

(sub-SN)
t ∈ CCX

R,f(
~l) u : B � t FV(u) ⊆ FV(t) [[B]] = SN

u ∈ CCX
R,f(

~l)

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Dealing with function calls

Consider a relation = on pairs (h, ~v), where ~v are computable
arguments of h, such that = ∪ →prod is well-founded.

(app-fun)
(f,~l) = (g,~t) ~t ∈ CCR,f(~l)

g~t ∈ CCR,f(~l)

Example: (f,~l) = (g,~t) if either:

I f > g

I f ' g and ~l ((� ∪→)+)stat[f] ~t

where ≥ is a well-founded quasi-ordering on symbols
and stat[f] = stat[g] ∈ {lex,mul}

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Outline

Computability

Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Revisiting (HO)RPO

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Dealing with higher-order pattern-matching

f~t =β0η f~lσ →R rσ

Problem: ~t computable ⇒ ~lσ computable?

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Dealing with higher-order pattern-matching

Dale Miller (1991): if l is an higher-order
pattern and lσ =βη t with σ and t in
β-normal η-long form, then lσ →∗β0=η t
where C [(λxu)v] →β0 C [uvx] if v ∈ X

⇒ consider β0-normalized rewriting with
matching modulo β0η (subsumes CRS and
HRS rewriting)!

Theorem: assuming that ←β0η→R,β0η ⊆ →R,β0η=β0η, if t is
computable and t =β0η lσ with l an higher-order pattern, then lσ
is computable.

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Dealing with higher-order pattern-matching

Theorem: ←β0η→R,β0η ⊆ →R,β0η=β0η if:

I every rule is of the form f~l → r with f~l an higher-order pattern

I if l → r ∈ R, l : T ⇒ U and x /∈ FV(l), then lx → rx ∈ R
I if lx → r ∈ R and x /∈ FV(l), then l → λxr ∈ R

s ←β0 (λxs)x=β0η lσx→Rrσx

s ←η λxsx=β0ηλxlσ→Rλxrσ

⇒ every set of rules of the form f~l → r with f~l an higher-order
pattern can be completed into a set compatible with →β0η

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Outline

Computability

Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Revisiting (HO)RPO

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Dealing with rewriting modulo some equational theory

f~t =E u →R v

Problem: ~t computable ⇒ v computable?

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Dealing with rewriting modulo some equational theory

First, we need SN(→β) to be closed by =E . For instance:

Theorem: →β=E ⊆ =E→β if:

I E is linear

I E is regular (∀l = r ∈ E ,FV(l) = FV(r))

I E is algebraic (no abstraction nor applied variable)

x × 0 = 0

x × (y + z) = (x × y) + (x × z)

∀(λx∀(λyPxy)) = ∀(λy∀(λxPxy))

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Dealing with rewriting modulo some equational theory

Given a set E of equations and a set R of rewrite rules, let now
→ =→β ∪=E→R and RedER be the set of P such that:

I P ⊆ SN(→)

I →(P) ⊆ P and =E (P) ⊆ P

I if t is neutral and → (t) ⊆ P then t ∈ P

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Dealing with rewriting modulo some equational theory

Theorem: assuming that →β=E ⊆ =E→β, the relation
→β ∪=E→R terminates if:

I every rule of R is of the form h~n→ r with r ∈ CCER,h(~n),

I every equation of E is of the form f~l = g~m
with ~m ∈ CCER,f(

~l) and ~l ∈ CCER,g(~m).

f~t = f~lσ ↔E g~mσ ↔E . . .↔E h~nθ →R rθ = v

~t computable ⇒ ~mσ computable ⇒ . . .⇒ v computable

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Dealing with rewriting modulo some equational theory

Examples:

I commutativity: +xy = +yx

{y , x} ⊆ CC+(xy)

I associativity: +(+xy)z = +x(+yz)

{x ,+yz} ⊆ CC+((+xy)z)
{+xy , z} ⊆ CC+(x(+yz))

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Outline

Computability

Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory

Revisiting (HO)RPO

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

RPO

RPO is a well-founded quasi-ordering on FO terms extending a
well-founded quasi-ordering > on symbols (Plaisted-Dershowitz 78)

(1)
ti ≥rpo u

f~t >rpo u
(2)

(f,~t) = (g, ~u) f~t >rpo ~u

f~t >rpo g~u

where (f,~t) = (g, ~u) if either f > g or f ' g and ~t (>rpo)stat[f] ~u

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

HORPO

HORPO is a non-transitive extension of RPO to λ-terms
(Jouannaud-Rubio 99)

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Revisiting (HO)RPO

What is the relation between CC and HORPO?

I both are based on computability

I there are even extensions of HORPO using CC

I CC is defined for a fixed R

CC is itself a relation!

replace t ∈ CCR,f(~l) by f~l >CC(R) t

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Revisiting (HO)RPO

(arg) f~l >CC(R) li

(red)
f~l >CC(R) t t →β ∪ →R t ′

f~l >CC(R) t ′

(app-fun)
(f,~l) = (g,~t) f~l >CC(R) ~t

f~l >CC(R) g~t

(f,~l) = (g,~t) if either f > g
or f ' g and ~l ((� ∪→β ∪→R)+)stat[f] ~t

. . .

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

Revisiting (HO)RPO

R 7→ {(f~l , r) | r ∈ CC∅R,f , type(f~l) = type(r)}

is a monotone function on the complete lattice of relations

the monotone closure of its least fixpoint:

I contains HORPO

I is equal to RPO when restricted to FO terms!

⇒ this provides a general method to easily get a powerful ordering
for richer type systems

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

Computability
Dealing with higher-order pattern-matching

Dealing with rewriting modulo some equational theory
Revisiting (HO)RPO

To know more on computability closure

I how to deal with constructors with functional arguments

I how to deal with conditional rewriting

I what is the relation with dependency pairs

I what is the relation with semantic labelling

see https://who.rocq.inria.fr/Frederic.Blanqui/

Thank you!

Frédéric Blanqui (INRIA) Computability Closure: the Swiss knife of HO termination

https://who.rocq.inria.fr/Frederic.Blanqui/

	Computability
	Dealing with higher-order pattern-matching
	Dealing with rewriting modulo some equational theory
	Revisiting (HO)RPO

