
Proof Systems Interoperability

Frédéric Blanqui

EuroProofNet

https://blanqui.gitlabpages.inria.fr/
https://www.inria.fr/
https://europroofnet.github.io/
https://europroofnet.github.io/

Outline

Historical overview on proof systems interoperability

How to encode logics in λΠ/R ?

Example: from HOL-Light to Coq via Lambdapi

Libraries of formal proofs today

Library Nb files Nb objects∗

Coq Opam 37,700 1,285,000
Isabelle AFP 8,700 272,000
Lean Mathlib 4,600 238,000
Mizar Mathlib 1,400 77,000
HOL-Light Lib 635 36,500

.

LOC

∗ type, definition, theorem, . . . (July 2024)

▶ Every system has its own basic libraries on integers, lists, reals, . . .

▶ Some definitions/theorems are available in one system only
and took several man-years to be formalized

https://github.com/coq/opam
https://www.isa-afp.org/
https://github.com/leanprover-community/mathlib
http://mizar.org/
https://github.com/jrh13/hol-light
https://www.isa-afp.org/statistics/

Libraries of formal proofs today

Library Nb files Nb objects∗

Coq Opam 37,700 1,285,000
Isabelle AFP 8,700 272,000
Lean Mathlib 4,600 238,000
Mizar Mathlib 1,400 77,000
HOL-Light Lib 635 36,500

.

LOC

∗ type, definition, theorem, . . . (July 2024)

▶ Every system has its own basic libraries on integers, lists, reals, . . .

▶ Some definitions/theorems are available in one system only
and took several man-years to be formalized

https://github.com/coq/opam
https://www.isa-afp.org/
https://github.com/leanprover-community/mathlib
http://mizar.org/
https://github.com/jrh13/hol-light
https://www.isa-afp.org/statistics/

Interest of proof systems interoperability

▶ Avoid duplicating developments and losing time

▶ Facilitate development of new proofs and new systems

▶ Increase reliability of formal proofs (cross-checking)

▶ Facilitate validation by certification authorities

▶ Relativize the choice of a system (school, industry)

▶ Provide multi-system data to machine learning

Difficulties of proof systems interoperability

▶ Each system is based on different axioms and deduction rules

▶ It is usually non trivial and sometimes impossible to translate a
proof from one system to the other (e.g. a proof using
impredicativity or proof irrelevance in a system not allowing
these features)

Some milestones
▶ 1993: QED Manifesto

DIMACS format for CNF problems
TPTP format for FOL problems [Sutcliffe & al]

▶ 1996: HOL90 to NuPRL translator [Howe, statements only]

▶ 1998: MathML/OpenMath/OMDoc [Kohlhase & al]

▶ 2003: TPDB format for rewrite systems
TSTP proof format for ATPs
SMT-lib format for FOL/T problems
Flyspeck project with HOL-Light, Coq and Isabelle/HOL

▶ 2007: Functional PTSs in λΠ/R [Cousineau & Dowek]
OpenTheory proof format for HOL-based proof assistants

▶ 2009: CPF proof format for termination provers

▶ 2011: Logic Atlas & Integrator [Kohlhase & al]

▶ 2013: DRAT proof format for SAT solvers [Heule & al]
MMT/Modules for Mathematical Theories [Rabe & al]

▶ 2020: Alethe proof format for SMT solvers [Fontaine & al]

https://en.wikipedia.org/wiki/QED_manifesto
http://archive.dimacs.rutgers.edu/pub/challenge/satisfiability/doc/
https://tptp.org/
https://www.w3.org/Math/
https://openmath.org/
https://www.omdoc.org/
https://www.lri.fr/~marche/tpdb/
https://tptp.org/TSTP/
http://smtlib.cs.uiowa.edu/
https://code.google.com/archive/p/flyspeck/
http://doi.org/10.1007/978-3-540-73228-0_9
https://www.gilith.com/opentheory/
http://cl-informatik.uibk.ac.at/software/cpf/
https://kwarc.info/projects/latin/
https://www.cs.utexas.edu/~marijn/drat-trim/
https://uniformal.github.io/
https://verit.loria.fr/documentation/alethe-spec.pdf

One-to-one translation tools
▶ HOL90 to NuPRL [Howe 1996, statements only]

▶ HOL98 to Coq [Denney 2000]

▶ HOL98 to NuPRL [Naumov et al 2001]
Flyspeck project with HOL-Light, Coq and Isabelle/HOL [2003]

▶ HOL to Isabelle/HOL [Obua 2006]

▶ Isabelle/HOL to HOL-Light [McLaughlin 2006]

▶ HOL-Light to Coq [Wiedijk 2007, no implementation]

▶ HOL-Light to Coq [Keller & Werner 2010]

▶ HOL-Light to HOL4 [Kumar 2013]

▶ HOL-Light to Metamath [Carneiro 2016]

▶ HOL4 to Isabelle/HOL [Immler et al 2019]

▶ Lean3 to Coq [Gilbert 2020]

▶ Lean3 to Lean4 [Lean community 2021]

▶ Maude to Lean [Rubio & Riesco 2022]

▶ . . .

Interoperability between n systems ?
1

2

3
...
n

1

2

3
...
n

n(n − 1) translators

1

2

3

. . .

n

n translators

Can’t we be more generic ?
1

2

3
...
n

1

2

3
...
n

D

2n translators

Interoperability between n systems ?
1

2

3
...
n

1

2

3
...
n

n(n − 1) translators

1

2

3

. . .

n

n translators

Can’t we be more generic ?
1

2

3
...
n

1

2

3
...
n

D

2n translators

Interoperability between n systems ?
1

2

3
...
n

1

2

3
...
n

n(n − 1) translators

1

2

3

. . .

n

n translators

Can’t we be more generic ?
1

2

3
...
n

1

2

3
...
n

D

2n translators

A common language for proofs?

A logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D/S in D

How to translate a proof t ∈ A in a proof u ∈ B
via a logical framework D?

t

system A

u

system BD/A D/B

t’
1

u’
3

2

1. translate t ∈ A in t ′ ∈ D/A

2. identify the axioms and deduction rules of A used in t ′

translate t ′ ∈ D/A in u′ ∈ D/B if possible

3. translate u′ ∈ D/B in u ∈ B

⇒ represent features common to A & B identically in D/A & D/B

How to translate a proof t ∈ A in a proof u ∈ B
via a logical framework D?

t

system A

u

system BD/A D/B

t’
1

u’
32

1. translate t ∈ A in t ′ ∈ D/A

2. identify the axioms and deduction rules of A used in t ′

translate t ′ ∈ D/A in u′ ∈ D/B if possible

3. translate u′ ∈ D/B in u ∈ B

⇒ represent features common to A & B identically in D/A & D/B

How to translate a proof t ∈ A in a proof u ∈ B
via a logical framework D?

t

system A

u

system BD/A D/B

t’
1

u’
32

1. translate t ∈ A in t ′ ∈ D/A

2. identify the axioms and deduction rules of A used in t ′

translate t ′ ∈ D/A in u′ ∈ D/B if possible

3. translate u′ ∈ D/B in u ∈ B

⇒ represent features common to A & B identically in D/A & D/B

A common language for proofs?

A logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D/S in D

Example: D = predicate calculus

allows one to represent S=geometry, S=arithmetic, S=set theory, . . .
not well suited for computation and dependent types

Better: D = λΠ-calculus modulo rewriting/Dedukti

allows one to represent also:
S=HOL, S=Coq, S=Agda, S=PVS, . . .

other options: λProlog, Twelf, Isabelle, Metamath, MMT, . . .

https://www.lix.polytechnique.fr/~dale/lProlog/
http://twelf.org
https://isabelle.in.tum.de/
https://us.metamath.org/
https://uniformal.github.io/

A common language for proofs?

A logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D/S in D

Example: D = predicate calculus

allows one to represent S=geometry, S=arithmetic, S=set theory, . . .
not well suited for computation and dependent types

Better: D = λΠ-calculus modulo rewriting/Dedukti

allows one to represent also:
S=HOL, S=Coq, S=Agda, S=PVS, . . .

other options: λProlog, Twelf, Isabelle, Metamath, MMT, . . .

https://www.lix.polytechnique.fr/~dale/lProlog/
http://twelf.org
https://isabelle.in.tum.de/
https://us.metamath.org/
https://uniformal.github.io/

Dedukti, an assembly language for proof systems

Dedukti

AtelierBTLAPS

ICSPA project

K

Isabelle

OpenTheory

HOL-Light

Matita

Agda Lean

Mizar

CubicalTT

Coq

FoCaLiZe

Zenon
ArchSAT TSTP

Alethe

SMT solvers
cvc5, veriT

Lambdapi PVS
automated
provers

Vampire, E, . . .

Lambdapi = Dedukti + implicit arguments/coercions, tactics, . . .

All translation tools are available on https://github.com/Deducteam/

https://github.com/Deducteam/

Libraries translated to Dedukti

System Libraries

OpenTheory OpenTheory Library

HOL-Light Multivariate (all ML files soon?)
Matita Arithmetic Library
Coq Stdlib parts, GeoCoq parts

Isabelle HOL session, AFP parts (AFP soon?)
Agda Stdlib parts (± 25%)
PVS Stdlib parts (statements only)
TPTP E 69%, Vampire 83% (for CNF only)

integration in TPTP World via GDV

Remark: Dedukti libraries can be searched by using Lambdapi
index and search commands (Claudio Sacerdoti Coen)

Libraries translated to Dedukti

System Libraries

OpenTheory OpenTheory Library

HOL-Light Multivariate (all ML files soon?)
Matita Arithmetic Library
Coq Stdlib parts, GeoCoq parts

Isabelle HOL session, AFP parts (AFP soon?)
Agda Stdlib parts (± 25%)
PVS Stdlib parts (statements only)
TPTP E 69%, Vampire 83% (for CNF only)

integration in TPTP World via GDV

Remark: Dedukti libraries can be searched by using Lambdapi
index and search commands (Claudio Sacerdoti Coen)

Examples of translations via Dedukti

▶ Matita arith lib −→ OpenTheory, Coq, PVS, Lean [Thiré 2018]
http://logipedia.inria.fr

▶ Matita arith lib −→ Agda [Felicissimo 2023]

https://github.com/thiagofelicissimo/matita lib in agda

▶ HOL-Light −→ Coq [B. 2024]

https://github.com/Deducteam/hol2dk/

▶ Isabelle/HOL −→ Coq (work in progress)

[B., Dubut, Yamada, Leray, Färber, Wenzel]
https://github.com/Deducteam/isabelle dedukti/

http://logipedia.inria.fr
https://github.com/thiagofelicissimo/matita_lib_in_agda
https://github.com/Deducteam/hol2dk/
https://github.com/Deducteam/isabelle_dedukti/

Outline

Historical overview on proof systems interoperability

How to encode logics in λΠ/R ?

Example: from HOL-Light to Coq via Lambdapi

What is the λΠ-calculus modulo rewriting?

λΠ/R = λ simply-typed λ-calculus
+ Π dependent types, e.g. Array n
+ R identification of types modulo rewrites rules l ↪→ r

typing = typing of Edinburg’s Logical Framework LF including:

(abs)
Γ, x : A ⊢ t : B Γ ⊢ Πx : A,B : TYPE

Γ ⊢ λx : A, t : Πx : A,B
x /∈ Γ: types of

local variables

(app)
Γ ⊢ t : Πx : A,B Γ ⊢ u : A

Γ ⊢ tu : B{x 7→ u}

+ the rule (conv)
Γ ⊢ t : A A ≡βR B

Γ ⊢ t : B

≡βR: equational theory
generated by β and R

concat : Πp : N,Array p → Πq : N,Array q → Array(p + q)
concat 2 a 3 b : Array(2 + 3) ≡βR Array(5)

What is the λΠ-calculus modulo rewriting?

λΠ/R = λ simply-typed λ-calculus
+ Π dependent types, e.g. Array n
+ R identification of types modulo rewrites rules l ↪→ r

typing = typing of Edinburg’s Logical Framework LF including:

(abs)
Γ, x : A ⊢ t : B Γ ⊢ Πx : A,B : TYPE

Γ ⊢ λx : A, t : Πx : A,B
x /∈ Γ: types of

local variables

(app)
Γ ⊢ t : Πx : A,B Γ ⊢ u : A

Γ ⊢ tu : B{x 7→ u}

+ the rule (conv)
Γ ⊢ t : A A ≡βR B

Γ ⊢ t : B

≡βR: equational theory
generated by β and R

concat : Πp : N,Array p → Πq : N,Array q → Array(p + q)
concat 2 a 3 b : Array(2 + 3) ≡βR Array(5)

First-order logic

▶ the set of terms
built from a set of function symbols equipped with an arity

▶ the set of propositions
built from a set of predicate symbols equipped with an arity
and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃

▶ the set of axioms (the actual theory)

▶ the subset of provable propositions
using deduction rules, e.g. natural deduction:

(⇒-intro)
Γ,A ⊢ B

Γ ⊢ A ⇒ B
(⇒-elim)

Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B

(∀-intro)
Γ ⊢ A x /∈ Γ

Γ ⊢ ∀x ,A
(∀-elim)

Γ ⊢ ∀x ,A
Γ ⊢ A{(x , u)}

. . .

Encoding of first-order logic

▶ the set of terms I : TYPE
built from a set of function symbols equipped with an arity

function symbol: I → . . . → I → I

▶ the set of propositions Prop : TYPE
built from a set of predicate symbols equipped with an arity

predicate symbol: I → . . . → I → Prop
and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃

⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .
we use λ-calculus to encode quantifiers:

we encode ∀x ,A as ∀(λx : I ,A)
how to encode proofs?

▶ the set of axioms (the actual theory)

▶ the subset of provable propositions
using deduction rules, e.g. natural deduction

Encoding of first-order logic

▶ the set of terms I : TYPE
built from a set of function symbols equipped with an arity

function symbol: I → . . . → I → I

▶ the set of propositions Prop : TYPE
built from a set of predicate symbols equipped with an arity

predicate symbol: I → . . . → I → Prop

and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃
⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .

we use λ-calculus to encode quantifiers:
we encode ∀x ,A as ∀(λx : I ,A)

how to encode proofs?

▶ the set of axioms (the actual theory)

▶ the subset of provable propositions
using deduction rules, e.g. natural deduction

Encoding of first-order logic

▶ the set of terms I : TYPE
built from a set of function symbols equipped with an arity

function symbol: I → . . . → I → I

▶ the set of propositions Prop : TYPE
built from a set of predicate symbols equipped with an arity

predicate symbol: I → . . . → I → Prop
and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃

⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .
we use λ-calculus to encode quantifiers:

we encode ∀x ,A as ∀(λx : I ,A)

how to encode proofs?

▶ the set of axioms (the actual theory)

▶ the subset of provable propositions
using deduction rules, e.g. natural deduction

Encoding of first-order logic

▶ the set of terms I : TYPE
built from a set of function symbols equipped with an arity

function symbol: I → . . . → I → I

▶ the set of propositions Prop : TYPE
built from a set of predicate symbols equipped with an arity

predicate symbol: I → . . . → I → Prop
and the logical connectives ⊤, ⊥, ¬, ⇒, ∧, ∨, ⇔, ∀, ∃

⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .
we use λ-calculus to encode quantifiers:

we encode ∀x ,A as ∀(λx : I ,A)
how to encode proofs?

▶ the set of axioms (the actual theory)

▶ the subset of provable propositions
using deduction rules, e.g. natural deduction

Using λ-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

by interpreting propositions as types (⇒/→, ∀/Π)

the typing rules of λΠ correspond to the rules of natural deduction:

(⇒-intro)
Γ, x :A ⊢ t :B

Γ ⊢ λx : A, t :A ⇒ B

(⇒-elim)
Γ ⊢ t :A ⇒ B Γ ⊢ u :A

Γ ⊢ tu :B

(∀-intro)
Γ ⊢ t :A x /∈ Γ

Γ ⊢ λx , t :∀x ,A

(∀-elim)
Γ ⊢ t : ∀x ,A

Γ ⊢ tu : A{(x , u)}

and proof checking is reduced to type checking

Expliciting the Brouwer-Heyting-Kolmogorov interpretation

terms of type Prop are not types. . .

but we can interpret a proposition as a type by applying:

Prf : Prop → TYPE

Prf A is the type of proofs of proposition A

but
λx : Prf A, x : Prf A → Prf A

and
λx : Prf A, x ̸ : Prf (A ⇒ A)

unless we add the rewrite rule

Prf (A⇒B) ↪→ Prf A → Prf B

Expliciting the Brouwer-Heyting-Kolmogorov interpretation

terms of type Prop are not types. . .

but we can interpret a proposition as a type by applying:

Prf : Prop → TYPE

Prf A is the type of proofs of proposition A

but
λx : Prf A, x : Prf A → Prf A

and
λx : Prf A, x ̸ : Prf (A ⇒ A)

unless we add the rewrite rule

Prf (A⇒B) ↪→ Prf A → Prf B

Expliciting the Brouwer-Heyting-Kolmogorov interpretation

terms of type Prop are not types. . .

but we can interpret a proposition as a type by applying:

Prf : Prop → TYPE

Prf A is the type of proofs of proposition A

but
λx : Prf A, x : Prf A → Prf A

and
λx : Prf A, x ̸ : Prf (A ⇒ A)

unless we add the rewrite rule

Prf (A⇒B) ↪→ Prf A → Prf B

Encoding ⇒

because Prf (A ⇒ B) ↪→ Prf A → Prf B

the introduction rule for ⇒ is the abstraction:

(⇒-intro)
Γ,A ⊢ B

Γ ⊢ A ⇒ B

(abs)
Γ, x : Prf A ⊢ t : Prf B

Γ ⊢ λx : A, t : Prf A → Prf B
(conv)

Γ ⊢ λx : A, t : Prf (A ⇒ B)

the elimination rule for ⇒ is the application:

(⇒-elim)
Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B

(conv)
Γ ⊢ t : Prf (A ⇒ B)

Γ ⊢ t : Prf A → Prf B
(app)

Γ ⊢ u : Prf A

Γ ⊢ tu : Prf B

Encoding ⇒

because Prf (A ⇒ B) ↪→ Prf A → Prf B

the introduction rule for ⇒ is the abstraction:

(⇒-intro)
Γ,A ⊢ B

Γ ⊢ A ⇒ B

(abs)
Γ, x : Prf A ⊢ t : Prf B

Γ ⊢ λx : A, t : Prf A → Prf B
(conv)

Γ ⊢ λx : A, t : Prf (A ⇒ B)

the elimination rule for ⇒ is the application:

(⇒-elim)
Γ ⊢ A ⇒ B Γ ⊢ A

Γ ⊢ B

(conv)
Γ ⊢ t : Prf (A ⇒ B)

Γ ⊢ t : Prf A → Prf B
(app)

Γ ⊢ u : Prf A

Γ ⊢ tu : Prf B

Encoding ∀

we can do something similar for ∀ : (I → Prop) → Prop by taking:

Prf (∀A) ↪→ Πx : I ,Prf (Ax)

then the introduction rule for ∀ is the abstraction
and the elimination rule for ∀ is the application

Encoding the other connectives
the other connectives can be defined
by using a meta-level quantification on propositions:

Prf (A∧B) ↪→ ΠC : Prop, (Prf A → Prf B → Prf C) → Prf C

introduction and elimination rules can be derived:

(∧-intro):

λa : Prf A, λb : Prf B, λC : Prop, λh : Prf A → Prf B → Prf C , hab
is of type

Prf A → Prf B → Prf (A ∧ B)

(∧-elim1):

λc : Prf (A ∧ B), c A (λa : Prf A, λb : Prf B, a)
is of type

Prf (A ∧ B) → Prf A

Encoding the other connectives
the other connectives can be defined
by using a meta-level quantification on propositions:

Prf (A∧B) ↪→ ΠC : Prop, (Prf A → Prf B → Prf C) → Prf C

introduction and elimination rules can be derived:

(∧-intro):

λa : Prf A, λb : Prf B, λC : Prop, λh : Prf A → Prf B → Prf C , hab
is of type

Prf A → Prf B → Prf (A ∧ B)

(∧-elim1):

λc : Prf (A ∧ B), c A (λa : Prf A, λb : Prf B, a)
is of type

Prf (A ∧ B) → Prf A

To summarize: λΠ/R-theory FOL for first-order logic

signature ΣFOL:

I : TYPE
f : I → . . . → I → I for each function symbol f of arity n
Prop : TYPE
P : I → . . . → I → Prop for each predicate symbol P of arity n
⊤ : Prop, ¬ : Prop → Prop, ∀ : (I → Prop) → Prop, . . .
Prf : Prop → TYPE

a : Prf A for each axiom A

rules RFOL:

Prf (A⇒B) ↪→ Prf A → Prf B
Prf (∀A) ↪→ Πx : I ,Prf (Ax)

Prf (A∧B) ↪→ ΠC : Prop, (Prf A → Prf B → Prf C) → Prf C
Prf⊥ ↪→ ΠC : Prop,Prf C

Prf (¬A) ↪→ Prf A → Prf⊥
. . .

Encoding of first-order logic in λΠ/FOL

encoding of terms:

|x | = x
|ft1 . . . tn| = f |t1| . . . |tn|

encoding of propositions:

|Pt1 . . . tn| = P|t1| . . . |tn|
|⊤| = ⊤
|A ∧ B| = |A| ∧ |B|
|∀x ,A| = ∀(λx : I , |A|)
. . .
|Γ,A| = |Γ|, x∥Γ∥+1 : A

encoding of proofs:∣∣∣∣∣ πΓ,A⊢B

Γ ⊢ A ⇒ B
(⇒i)

∣∣∣∣∣ = λx∥Γ∥+1 : Prf |A|, |πΓ,A⊢B |∣∣∣∣∣πΓ⊢A⇒B πΓ⊢A

Γ ⊢ B
(⇒e)

∣∣∣∣∣ = |πΓ⊢A⇒B | |πΓ⊢A|

. . .

Properties of the encoding in λΠ/FOL

▶ a term is mapped to a term of type I

▶ a proposition is mapped to a term of type Prop

▶ a proof of A is mapped to a term of type Prf |A|

if we find t of type Prf |A|, can we deduce that A is provable ?

▶ yes, the encoding is conservative:
if Prf |A| is inhabited then A is provable

proof sketch: because ↪→βR terminates and is confluent, t has a
normal form, and terms in normal form can be easily translated
back in first-order logic and natural deduction

Properties of the encoding in λΠ/FOL

▶ a term is mapped to a term of type I

▶ a proposition is mapped to a term of type Prop

▶ a proof of A is mapped to a term of type Prf |A|

if we find t of type Prf |A|, can we deduce that A is provable ?

▶ yes, the encoding is conservative:
if Prf |A| is inhabited then A is provable

proof sketch: because ↪→βR terminates and is confluent, t has a
normal form, and terms in normal form can be easily translated
back in first-order logic and natural deduction

Properties of the encoding in λΠ/FOL

▶ a term is mapped to a term of type I

▶ a proposition is mapped to a term of type Prop

▶ a proof of A is mapped to a term of type Prf |A|

if we find t of type Prf |A|, can we deduce that A is provable ?

▶ yes, the encoding is conservative:
if Prf |A| is inhabited then A is provable

proof sketch: because ↪→βR terminates and is confluent, t has a
normal form, and terms in normal form can be easily translated
back in first-order logic and natural deduction

Multi-sorted first-order logic

for each sort Ik (e.g. point, line, circle), add:

Ik : TYPE
∀k : (Ik → Prop) → Prop

Prf (∀kA) ↪→ Πx : Ik ,Prf (Ax)

Polymorphic first-order logic

same trick as for the BHK interpretation of propositions:

Set : TYPE type of sorts
El : Set → TYPE interpretation of sorts as types
ι : Set for each sort ι

∀ : Πa : Set, (El a → Prop) → Prop

Prf (∀ap) ↪→ Πx : El a,Prf (p x)

Higher-order logic

order quantification on

1 elements
2 sets of elements
3 sets of sets of elements
.
ω any set

quantification on functions:

; : Set → Set → Set

El(a; b) ↪→ El a → El b

quantification on propositions/impredicativity (e.g. ∀p, p ⇒ p):

o : Set

El o ↪→ Prop

Higher-order logic

order quantification on

1 elements
2 sets of elements
3 sets of sets of elements
.
ω any set

quantification on functions:

; : Set → Set → Set

El(a; b) ↪→ El a → El b

quantification on propositions/impredicativity (e.g. ∀p, p ⇒ p):

o : Set

El o ↪→ Prop

Higher-order logic

order quantification on

1 elements
2 sets of elements
3 sets of sets of elements
.
ω any set

quantification on functions:

; : Set → Set → Set

El(a; b) ↪→ El a → El b

quantification on propositions/impredicativity (e.g. ∀p, p ⇒ p):

o : Set

El o ↪→ Prop

Encoding dependent constructions

dependent implication:

⇒d : Πa : Prop, (Prf a → Prop) → Prop

Prf (a⇒d b) ↪→ Πx : Prf a,Prf (b x)

dependent types:

;d : Πa : Set, (El a → Set) → Set

El(a;d b) ↪→ Πx : El a,El(b x)

proofs in object-terms:

π : Πp : Prop, (Prf p → Set) → Set

El(π p a) ↪→ Πx : Prf p,El(a x)

example: div : El(ι; ι;d λy : El ι, π(y > 0)(λ , ι))
takes 3 arguments: x : El ι, y : El ι, p : Prf (y > 0)
and returns a term of type El ι

Encoding dependent constructions

dependent implication:

⇒d : Πa : Prop, (Prf a → Prop) → Prop

Prf (a⇒d b) ↪→ Πx : Prf a,Prf (b x)

dependent types:

;d : Πa : Set, (El a → Set) → Set

El(a;d b) ↪→ Πx : El a,El(b x)

proofs in object-terms:

π : Πp : Prop, (Prf p → Set) → Set

El(π p a) ↪→ Πx : Prf p,El(a x)

example: div : El(ι; ι;d λy : El ι, π(y > 0)(λ , ι))
takes 3 arguments: x : El ι, y : El ι, p : Prf (y > 0)
and returns a term of type El ι

Encoding dependent constructions

dependent implication:

⇒d : Πa : Prop, (Prf a → Prop) → Prop

Prf (a⇒d b) ↪→ Πx : Prf a,Prf (b x)

dependent types:

;d : Πa : Set, (El a → Set) → Set

El(a;d b) ↪→ Πx : El a,El(b x)

proofs in object-terms:

π : Πp : Prop, (Prf p → Set) → Set

El(π p a) ↪→ Πx : Prf p,El(a x)

example: div : El(ι; ι;d λy : El ι, π(y > 0)(λ , ι))
takes 3 arguments: x : El ι, y : El ι, p : Prf (y > 0)
and returns a term of type El ι

Encoding the systems of Barendregt’s λ-cube

system PTS rule λΠ/R rule
simple types TYPE, TYPE Prf (a⇒d b) ↪→ Πx : Prf a,Prf (b x)

polymorphic types KIND, TYPE Prf (∀ab) ↪→ Πx : El a,Prf (b x)
dependent types TYPE, KIND El(π a b) ↪→ Πx : Prf a,El(b x)
type constructors KIND, KIND El(a;d b) ↪→ Πx : El a,El(b x)

λ→

λ2

λω

λΠ

λΠω

λΠ2

λω λΠω

λ→ dependent
types

polymorphic
types

type
constructors

adding

ad
d
in
g

ad
di
ng

The modular λΠ/R theory U and its sub-theories
[B., Dowek, Grienenberger, Hondet, Thiré 2021]

Lambdapi files

http://doi.org/10.46298/lmcs-19(1:12)2023
https://github.com/Deducteam/lambdapi-logics/tree/master/U

Functional Pure Type Systems (S,A,P) A ⊆ S2,P ⊆ S2 × S

terms and types:

t := x | tt | λx : t, t | Πx : t, t | s ∈ S

typing rules:

∅ ⊢
Γ ⊢ A : s

Γ, x : A ⊢
Γ ⊢ (x ,A) ∈ Γ

Γ ⊢ x : A

(sort)
Γ ⊢ (s1, s2) ∈ A

Γ ⊢ s1 : s2

(prod)
Γ ⊢ A : s1 Γ, x : A ⊢ B : s2 ((s1, s2), s3) ∈ P

Γ ⊢ Πx : A,B : s3

Γ, x : A ⊢ t : B Γ ⊢ Πx : A,B : s

Γ ⊢ λx : A, t : Πx : A,B

Γ ⊢ t : Πx : A,B Γ ⊢ u : A

Γ ⊢ tu : B{(x , u)}
Γ ⊢ t : A A ≃β A′ Γ ⊢ A′ : s

Γ ⊢ t : A′

Encoding Functional Pure Type Systems
[Cousineau & Dowek 2007]

signature:

Us : TYPE for each sort s ∈ S
Els : Us → TYPE

s1 : Us2 for every (s1, s2) ∈ A
πs1,s2 : Πa : Us1 , (Els1 a → Us2) → Us3 for every ((s1, s2), s3) ∈ P

rules:

Els2 s1 ↪→ Us1 for every (s1, s2) ∈ A
Els3(πs1,s2 a b) ↪→ Πx : Els1 a,Els2(b x) for every ((s1, s2), s3) ∈ P

encoding:

|x |Γ = x
|s|Γ = s
|λx : A, t|Γ = λx : Els |A|Γ, |t|Γ,x :A if Γ ⊢ A : s
|tu|Γ = |t|Γ|u|Γ
|Πx : A,B|Γ = πs1,s2 |A|Γ(λx : Els1 |A|Γ, |B|Γ,x :A)

if Γ ⊢ A : s1 and Γ, x : A ⊢ B : s2

Encoding other features

▶ recursive functions [Assaf 2015, Cauderlier 2016, Férey 2021]

– different approaches, no general theory (use recursors?)

▶ universe polymorphism [Genestier 2020]

– requires rewriting with matching modulo AC
or rewriting on AC canonical forms [B. 2022]

▶ η-conversion on function types [Genestier 2020]

▶ predicate subtyping with proof irrelevance [Hondet 2020]

▶ co-inductive objects and co-recursion [Felicissimo 2021]

Outline

Historical overview on proof systems interoperability

How to encode logics in λΠ/R ?

Example: from HOL-Light to Coq via Lambdapi

Previous works & tools on HOL to Coq

▶ Denney 2000: translates HOL98 proofs to Coq scripts using
some intermediate stack-based machine language

▶ Wiedijk 2007: describes a manual translation of HOL-Light
proofs in Coq terms via a shallow embedding (no implem)

▶ Keller & Werner 2010: translates HOL-Light proofs to Coq
terms via a deep embedding & computational reflection

▶ B. 2023: implements Wiedijk approach via a shallow
embedding in Lambdapi using results and ideas from:

– Assaf & Burel (translation of OpenTheory to Dedukti, 2015)
– Kaliszyk & Krauss (translation of HOL-Light to Isabelle, 2013)

Previous works & tools on HOL to Coq

▶ Denney 2000: translates HOL98 proofs to Coq scripts using
some intermediate stack-based machine language

▶ Wiedijk 2007: describes a manual translation of HOL-Light
proofs in Coq terms via a shallow embedding (no implem)

▶ Keller & Werner 2010: translates HOL-Light proofs to Coq
terms via a deep embedding & computational reflection

▶ B. 2023: implements Wiedijk approach via a shallow
embedding in Lambdapi using results and ideas from:

– Assaf & Burel (translation of OpenTheory to Dedukti, 2015)
– Kaliszyk & Krauss (translation of HOL-Light to Isabelle, 2013)

HOL-Light logic
Terms: simply typed λ-terms with prenex polymorphism (OCaml)
Rules:

⊢ t = t
REFL

Γ ⊢ s = t ∆ ⊢ t = u

Γ ∪∆ ⊢ s = u
TRANS

Γ ⊢ s = t ∆ ⊢ u = v

Γ ∪∆ ⊢ su = tv
MK COMB

Γ ⊢ s = t

Γ ⊢ λx , s = λx , t
ABS

⊢ (λx , t)x = t
BETA

{p} ⊢ p
ASSUME

Γ ⊢ p = q ∆ ⊢ p

Γ ∪∆ ⊢ q
EQ MP

Γ ⊢ p ∆ ⊢ q

(Γ− {q}) ∪ (∆− {p}) ⊢ p = q
DEDUCT ANTISYM RULE

Γ ⊢ p

Γθ ⊢ pθ
INST

Γ ⊢ p

ΓΘ ⊢ pΘ
INST TYPE

HOL-Light logic: connectives are defined from equality!
(Andrews Q0 logic)

⊤ =def (λp.p) = (λp.p)
∧ =def λp.λq.(λf .fpq) = (λf .f⊤⊤)
⇒ =def λp.λq.(p ∧ q) = p
∀ =def λp.p = (λx .⊤)
∃ =def λp.∀q.(∀x .px ⇒ q) ⇒ q
∨ =def λp.λq.∀r .(p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊥ =def ∀p.p
¬ =def λp.p ⇒ ⊥

Term and type definitions in HOL-Light

▶ One can give a name c to a term t of type A by adding:

– a typed constant c:A
– an axiom c = t

▶ One can give a name B to a type isomorphic to the set of terms
of type A satisfying some predicate p:A->bool by adding:

– a type constant B
– a proof of ∃a.p a

– a typed constant mk:A->B
– a typed constant dest:B->A
– an axiom ∀b:B.mk(dest b) = b

– an axiom ∀a:A.p a = (dest(mk a) = a)

A B{x :A|p(x)}

mk

dest

Term and type definitions in HOL-Light

▶ One can give a name c to a term t of type A by adding:

– a typed constant c:A
– an axiom c = t

▶ One can give a name B to a type isomorphic to the set of terms
of type A satisfying some predicate p:A->bool by adding:

– a type constant B
– a proof of ∃a.p a

– a typed constant mk:A->B
– a typed constant dest:B->A
– an axiom ∀b:B.mk(dest b) = b

– an axiom ∀a:A.p a = (dest(mk a) = a)

A B{x :A|p(x)}

mk

dest

Step 1: extract proofs out of HOL-Light
HOL-Light uses the LCF approach:

it records provability and not proofs

we need to patch it to export proofs (Obua 2005, Polu 2019):

type thm = Sequent of (term list * term

* int

)

val REFL : term -> thm

val TRANS : thm -> thm -> thm

val MK_COMB : thm * thm -> thm

val ABS : term -> thm -> thm

val BETA : term -> thm

val ASSUME : term -> thm

val EQ_MP : thm -> thm -> thm

val DEDUCT_ANTISYM_RULE : thm -> thm -> thm

val INST_TYPE : (hol_type * hol_type) list -> thm -> thm

val INST : (term * term) list -> thm -> thm

type proof = Proof of (thm * proof content)

and proof content =
— Prefl of term
— Ptrans of int * int

— ...

Step 1: extract proofs out of HOL-Light
HOL-Light uses the LCF approach:

it records provability and not proofs

we need to patch it to export proofs (Obua 2005, Polu 2019):

type thm = Sequent of (term list * term * int)

(* theorem identifier *)

val REFL : term -> thm

val TRANS : thm -> thm -> thm

val MK_COMB : thm * thm -> thm

val ABS : term -> thm -> thm

val BETA : term -> thm

val ASSUME : term -> thm

val EQ_MP : thm -> thm -> thm

val DEDUCT_ANTISYM_RULE : thm -> thm -> thm

val INST_TYPE : (hol_type * hol_type) list -> thm -> thm

val INST : (term * term) list -> thm -> thm

type proof = Proof of (thm * proof content)

and proof content =

| Prefl of term

| Ptrans of int * int

| ...

Base HOL-Light library: hol.ml

loads "pair.ml";; (* Theory of pairs *)

loads "compute.ml";; (* General call-by-value reduction tool for terms *)

loads "nums.ml";; (* Axiom of Infinity, definition of natural numbers *)

loads "recursion.ml";; (* Tools for primitive recursion on inductive types *)

loads "arith.ml";; (* Natural number arithmetic *)

loads "wf.ml";; (* Theory of wellfounded relations *)

loads "calc_num.ml";; (* Calculation with natural numbers *)

loads "normalizer.ml";; (* Polynomial normalizer for rings and semirings *)

loads "grobner.ml";; (* Groebner basis procedure for most semirings *)

loads "ind_types.ml";; (* Tools for defining inductive types *)

loads "lists.ml";; (* Theory of lists *)

loads "realax.ml";; (* Definition of real numbers *)

loads "calc_int.ml";; (* Calculation with integer-valued reals *)

loads "realarith.ml";; (* Universal linear real decision procedure *)

loads "real.ml";; (* Derived properties of reals *)

loads "calc_rat.ml";; (* Calculation with rational-valued reals *)

loads "int.ml";; (* Definition of integers *)

loads "sets.ml";; (* Basic set theory *)

loads "iterate.ml";; (* Iterated operations *)

loads "cart.ml";; (* Finite Cartesian products *)

loads "define.ml";; (* Support for general recursive definitions *)

Step 2: simplify HOL-Light proofs

the number of generated proof steps can be reduced as follows:

▶ instrument connectives intro/elim rules & α-equivalence (20%!)

▶ rewrite proofs:
SYM(REFL(t)) ↪→ REFL(t)
SYM(SYM(p)) ↪→ p

TRANS(REFL(t),p) ↪→ p
TRANS(p,REFL(t)) ↪→ p

CONJUNCT1(CONJ(p,)) ↪→ p
CONJUNCT2(CONJ(,p)) ↪→ p

MKCOMB(REFL(t),REFL(u)) ↪→ REFL(t(u))
EQMP(REFL(),p) ↪→ p

▶ remove useless proof steps (because of tactic failures)

initial number of
steps for hol .ml

with basic tactics
instrumentation

and simplification
and purge

14.3 M 8.6 M (-40%) 3.5 M (-76%)

hol .ml: theory of integers, lists, real numbers, etc.

Step 2: simplify HOL-Light proofs

the number of generated proof steps can be reduced as follows:

▶ instrument connectives intro/elim rules & α-equivalence (20%!)

▶ rewrite proofs:
SYM(REFL(t)) ↪→ REFL(t)
SYM(SYM(p)) ↪→ p

TRANS(REFL(t),p) ↪→ p
TRANS(p,REFL(t)) ↪→ p

CONJUNCT1(CONJ(p,)) ↪→ p
CONJUNCT2(CONJ(,p)) ↪→ p

MKCOMB(REFL(t),REFL(u)) ↪→ REFL(t(u))
EQMP(REFL(),p) ↪→ p

▶ remove useless proof steps (because of tactic failures)

initial number of
steps for hol .ml

with basic tactics
instrumentation

and simplification
and purge

14.3 M 8.6 M (-40%) 3.5 M (-76%)

hol .ml: theory of integers, lists, real numbers, etc.

Step 2: simplify HOL-Light proofs

the number of generated proof steps can be reduced as follows:

▶ instrument connectives intro/elim rules & α-equivalence (20%!)

▶ rewrite proofs:
SYM(REFL(t)) ↪→ REFL(t)
SYM(SYM(p)) ↪→ p

TRANS(REFL(t),p) ↪→ p
TRANS(p,REFL(t)) ↪→ p

CONJUNCT1(CONJ(p,)) ↪→ p
CONJUNCT2(CONJ(,p)) ↪→ p

MKCOMB(REFL(t),REFL(u)) ↪→ REFL(t(u))
EQMP(REFL(),p) ↪→ p

▶ remove useless proof steps (because of tactic failures)

initial number of
steps for hol .ml

with basic tactics
instrumentation

and simplification
and purge

14.3 M 8.6 M (-40%) 3.5 M (-76%)

hol .ml: theory of integers, lists, real numbers, etc.

Step 2: simplify HOL-Light proofs

the number of generated proof steps can be reduced as follows:

▶ instrument connectives intro/elim rules & α-equivalence (20%!)

▶ rewrite proofs:
SYM(REFL(t)) ↪→ REFL(t)
SYM(SYM(p)) ↪→ p

TRANS(REFL(t),p) ↪→ p
TRANS(p,REFL(t)) ↪→ p

CONJUNCT1(CONJ(p,)) ↪→ p
CONJUNCT2(CONJ(,p)) ↪→ p

MKCOMB(REFL(t),REFL(u)) ↪→ REFL(t(u))
EQMP(REFL(),p) ↪→ p

▶ remove useless proof steps (because of tactic failures)

initial number of
steps for hol .ml

with basic tactics
instrumentation

and simplification
and purge

14.3 M 8.6 M (-40%) 3.5 M (-76%)

hol .ml: theory of integers, lists, real numbers, etc.

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* Encoding of HOL -Light types as terms of type Set */

constant symbol Set : TYPE;

constant symbol bool : Set;

constant symbol fun : Set → Set → Set;

/* Interpretation of HOL -Light types as Lambdapi types */

injective symbol El : Set → TYPE;

rule El(fun $a $b) ↪→ El $a → El $b;

/* HOL -Light primitive constants */

constant symbol = [A] : El(fun A (fun A bool));

symbol ε [A] : El (fun (fun A bool) A);

/* Interpretation of HOL -Light propositions as Lambdapi types

(Curry -Howard correspondence to be defined) */

injective symbol Prf : El bool → TYPE;

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* Encoding of HOL -Light types as terms of type Set */

constant symbol Set : TYPE;

constant symbol bool : Set;

constant symbol fun : Set → Set → Set;

/* Interpretation of HOL -Light types as Lambdapi types */

injective symbol El : Set → TYPE;

rule El(fun $a $b) ↪→ El $a → El $b;

/* HOL -Light primitive constants */

constant symbol = [A] : El(fun A (fun A bool));

symbol ε [A] : El (fun (fun A bool) A);

/* Interpretation of HOL -Light propositions as Lambdapi types

(Curry -Howard correspondence to be defined) */

injective symbol Prf : El bool → TYPE;

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* Encoding of HOL -Light types as terms of type Set */

constant symbol Set : TYPE;

constant symbol bool : Set;

constant symbol fun : Set → Set → Set;

/* Interpretation of HOL -Light types as Lambdapi types */

injective symbol El : Set → TYPE;

rule El(fun $a $b) ↪→ El $a → El $b;

/* HOL -Light primitive constants */

constant symbol = [A] : El(fun A (fun A bool));

symbol ε [A] : El (fun (fun A bool) A);

/* Interpretation of HOL -Light propositions as Lambdapi types

(Curry -Howard correspondence to be defined) */

injective symbol Prf : El bool → TYPE;

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* Encoding of HOL -Light types as terms of type Set */

constant symbol Set : TYPE;

constant symbol bool : Set;

constant symbol fun : Set → Set → Set;

/* Interpretation of HOL -Light types as Lambdapi types */

injective symbol El : Set → TYPE;

rule El(fun $a $b) ↪→ El $a → El $b;

/* HOL -Light primitive constants */

constant symbol = [A] : El(fun A (fun A bool));

symbol ε [A] : El (fun (fun A bool) A);

/* Interpretation of HOL -Light propositions as Lambdapi types

(Curry -Howard correspondence to be defined) */

injective symbol Prf : El bool → TYPE;

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* HOL -Light axioms and rules */

symbol REFL [a] (t : El a) : Prf(= t t);

symbol MK_COMB [a b] [s t : El(fun a b)] [u v : El a] :

Prf(= s t) → Prf(= u v) → Prf(= (s u) (t v));

symbol EQ_MP [p q] : Prf(= p q) → Prf p → Prf q;

symbol fun_ext [a b] [f g : El (fun a b)] :

(Π x, Prf (= (f x) (g x))) → Prf (= f g);

symbol prop_ext [p q] :

(Prf p → Prf q) → (Prf q → Prf p) → Prf (= p q);

/* HOL -Light derived connectives */

constant symbol ⇒ : El (fun bool (fun bool bool));

rule Prf(⇒ $p $q) ↪→ Prf $p → Prf $q;
constant symbol ∀ [A] : El (fun (fun A bool) bool);

rule Prf(∀ $p) ↪→ Π x,Prf($p x);

...

/* Natural deduction rules */

symbol ∧i [p] : Prf p → Π[q],Prf q → Prf(∧ p q);

symbol ∧e1 [p q] : Prf(∧ p q) → Prf p;

symbol ∧e2 [p q] : Prf(∧ p q) → Prf q;

symbol ∃i [a] (p : El a → El bool) t : Prf(p t) → Prf(∃ p);

symbol ∃e [a] [p : El a → El bool] :

Prf(∃(λ x,p x)) → Π[r],(Π x:El a,Prf(p x) → Prf r) → Prf r;

...

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* HOL -Light axioms and rules */

symbol REFL [a] (t : El a) : Prf(= t t);

symbol MK_COMB [a b] [s t : El(fun a b)] [u v : El a] :

Prf(= s t) → Prf(= u v) → Prf(= (s u) (t v));

symbol EQ_MP [p q] : Prf(= p q) → Prf p → Prf q;

symbol fun_ext [a b] [f g : El (fun a b)] :

(Π x, Prf (= (f x) (g x))) → Prf (= f g);

symbol prop_ext [p q] :

(Prf p → Prf q) → (Prf q → Prf p) → Prf (= p q);

/* HOL -Light derived connectives */

constant symbol ⇒ : El (fun bool (fun bool bool));

rule Prf(⇒ $p $q) ↪→ Prf $p → Prf $q;
constant symbol ∀ [A] : El (fun (fun A bool) bool);

rule Prf(∀ $p) ↪→ Π x,Prf($p x);

...

/* Natural deduction rules */

symbol ∧i [p] : Prf p → Π[q],Prf q → Prf(∧ p q);

symbol ∧e1 [p q] : Prf(∧ p q) → Prf p;

symbol ∧e2 [p q] : Prf(∧ p q) → Prf q;

symbol ∃i [a] (p : El a → El bool) t : Prf(p t) → Prf(∃ p);

symbol ∃e [a] [p : El a → El bool] :

Prf(∃(λ x,p x)) → Π[r],(Π x:El a,Prf(p x) → Prf r) → Prf r;

...

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* HOL -Light axioms and rules */

symbol REFL [a] (t : El a) : Prf(= t t);

symbol MK_COMB [a b] [s t : El(fun a b)] [u v : El a] :

Prf(= s t) → Prf(= u v) → Prf(= (s u) (t v));

symbol EQ_MP [p q] : Prf(= p q) → Prf p → Prf q;

symbol fun_ext [a b] [f g : El (fun a b)] :

(Π x, Prf (= (f x) (g x))) → Prf (= f g);

symbol prop_ext [p q] :

(Prf p → Prf q) → (Prf q → Prf p) → Prf (= p q);

/* HOL -Light derived connectives */

constant symbol ⇒ : El (fun bool (fun bool bool));

rule Prf(⇒ $p $q) ↪→ Prf $p → Prf $q;
constant symbol ∀ [A] : El (fun (fun A bool) bool);

rule Prf(∀ $p) ↪→ Π x,Prf($p x);

...

/* Natural deduction rules */

symbol ∧i [p] : Prf p → Π[q],Prf q → Prf(∧ p q);

symbol ∧e1 [p q] : Prf(∧ p q) → Prf p;

symbol ∧e2 [p q] : Prf(∧ p q) → Prf q;

symbol ∃i [a] (p : El a → El bool) t : Prf(p t) → Prf(∃ p);

symbol ∃e [a] [p : El a → El bool] :

Prf(∃(λ x,p x)) → Π[r],(Π x:El a,Prf(p x) → Prf r) → Prf r;

...

Step 4: from Lambdapi to Coq

the translation is purely syntactic:

▶ the symbols El and Prf are removed

▶ some symbols are replaced by Coq expr. wrt a user-defined map:

HOL-Light Lambdapi Coq
hol type Set {type:>Type; el :type}

fun arr −>
bool bool Prop
= = eq

Prefl REFL eq refl
==> ⇒ −>
/\ ∧ and
num num nat
+ + add
<= <= le
.

example output:

Lemma thm_DIV_MOD : forall m : nat , forall n : nat ,

forall p : nat , (MOD (DIV m n) p) = (DIV (MOD m (mul n p)) n).

Step 5: alignment of definitions
▶ One can give a name c to a term t of type A by adding:

– a typed constant c:A
– an axiom c = t

to replace c by the Coq expression c’, we need to do in Coq:
– prove c’ = t

▶ One can give a name B to a type isomorphic to the set of terms
of type A satisfying some predicate p:A->bool by adding:
– a type constant B
– a proof of ∃a.p a

– a typed constant mk:A->B
– a typed constant dest:B->A
– an axiom ∀b:B.mk(dest b) = b

– an axiom ∀a:A.p a = (dest(mk a) = a)

to replace B by the Coq expression B’, we need to do in Coq:
– define mk:A->B’

– define dest:B’->A

– prove ∀b:B’, mk(dest b) = b

– prove ∀a:A, p a = (dest(mk a) = a)

Step 5: alignment of definitions
▶ One can give a name c to a term t of type A by adding:

– a typed constant c:A
– an axiom c = t

to replace c by the Coq expression c’, we need to do in Coq:
– prove c’ = t

▶ One can give a name B to a type isomorphic to the set of terms
of type A satisfying some predicate p:A->bool by adding:
– a type constant B
– a proof of ∃a.p a

– a typed constant mk:A->B
– a typed constant dest:B->A
– an axiom ∀b:B.mk(dest b) = b

– an axiom ∀a:A.p a = (dest(mk a) = a)

to replace B by the Coq expression B’, we need to do in Coq:
– define mk:A->B’

– define dest:B’->A

– prove ∀b:B’, mk(dest b) = b

– prove ∀a:A, p a = (dest(mk a) = a)

Step 5: alignment of definitions
▶ One can give a name c to a term t of type A by adding:

– a typed constant c:A
– an axiom c = t

to replace c by the Coq expression c’, we need to do in Coq:
– prove c’ = t

▶ One can give a name B to a type isomorphic to the set of terms
of type A satisfying some predicate p:A->bool by adding:
– a type constant B
– a proof of ∃a.p a

– a typed constant mk:A->B
– a typed constant dest:B->A
– an axiom ∀b:B.mk(dest b) = b

– an axiom ∀a:A.p a = (dest(mk a) = a)

to replace B by the Coq expression B’, we need to do in Coq:
– define mk:A->B’

– define dest:B’->A

– prove ∀b:B’, mk(dest b) = b

– prove ∀a:A, p a = (dest(mk a) = a)

Alignments already proved

▶ connectives

▶ unit type

▶ product type constructor

▶ type of natural numbers, addition, substraction, multiplication,
division, power, ordering, min, max, mod, even, odd, . . .

▶ option type constructor

▶ sum type constructor

▶ list type constructor, head, tail, concatenation, reverse, length,
map, forall, membership, . . . (thanks to Anthony Bordg)

and we are currently working on the type of real numbers

HOL-Light library in Coq

available on Opam:

https://github.com/deducteam/coq-hol-light/

currently contains 667 lemmas on logic, arithmetic and lists mainly

usage in Coq:

Require Import HOLLight.hol light.

https://github.com/deducteam/coq-hol-light/

Axioms required in Coq

Axiom classic (P : Prop) : P \/ ~ P.

Axiom constructive_indefinite_description (A : Type) P :

(exists x, P x) -> {x : A | P x}.

Axiom fun_ext {A B: Type} {f g: A -> B}:

(forall x, f x = g x) -> f = g.

Axiom prop_ext {P Q : Prop} : (P -> Q) -> (Q -> P) -> P = Q.

Axiom proof_irrelevance (P:Prop) (p1 p2 : P) : p1 = p2.

Performances

The translations (HOL-Light to Lambdapi, and Lambdapi to Coq)
and the verification by Coq can be done in parallel by generating
a Lambdapi/Coq file for each HOL-Light user-defined theorem

To scale up, we also need to share types and terms

On a machine with 32 processors i9-13950HX and 64Gb RAM:

HOL-Light file dump-simp dump size proof steps nb theorems

hol .ml 3m57s 3 Gb 5 M 5679
topology.ml 48m 52 Gb 52 M 18866

HOL-Light file make -j32 lp make -j32 v v files size make -j32 vo

hol .ml 51s 55s 1 Gb 18m4s
topology.ml 22m22s 20m16s 68 Gb 8h

Tools: hol2dk and lambdapi

▶ https://github.com/Deducteam/hol2dk

– provides a small patch for HOL-Light to export proofs

improves ProofTrace [Polu 2019] by reducing memory

consumption and adding on-the-fly writing on disk

– translates HOL-Light proofs to Dedukti and Lambdapi

▶ https://github.com/Deducteam/lambdapi

– allows to converts dk/lp files using some encodings of HOL
into Coq files

https://github.com/Deducteam/hol2dk
https://github.com/Deducteam/lambdapi

Conclusion

▶ interoperability theory/tools developed for 30 years now
but few tools are really usable for lack of maintenance

▶ significant progresses have been done on genericity
by using the λΠ-calculus modulo rewriting/Dedukti

▶ works well for medium-size developments with simple structures
(integers, lists, . . .) and automated theorem provers, e.g.

integration of Lambdapi in TPTP World/GDV [Sutcliffe]

▶ some people are skeptikal on the usability of translations on
complex structures but some progress is ongoing, e.g. translation
of type classes between Isabelle & Coq [Sacerdoti & Tassi]

▶ improving scalability, modularity, usability and reproducibility are
exciting research problems!

	Historical overview on proof systems interoperability
	How to encode logics in /R ?
	Example: from HOL-Light to Coq via Lambdapi

