Proof Systems Interoperability

Frédéric Blanqui

&,zu’a/- =|=|-

EuroProofNet

https://blanqui.gitlabpages.inria.fr/
https://www.inria.fr/
https://europroofnet.github.io/
https://europroofnet.github.io/

Outline

Historical overview on proof systems interoperability

Libraries of formal proofs today

Library Nb files | Nb objects™
Coq Opam 37,700 1,285,000
Isabelle AFP 8,700 272,000
Lean Mathlib 4,600 238,000

Mizar Mathlib 1,400 77,000
HOL-Light Lib 635 36,500

* type, definition, theorem, ... (July 2024)

LOC
3500000

3000000

2500000

2000000

1500000

1000000

500000

,-,-,I., L1 I ,,,,,,,,,,,
FHHLL FH O 000D 002,90
F PP PO D 000 DD P g Y
FEEFEFFPEPRPPEPRERPRRPEP

https://github.com/coq/opam
https://www.isa-afp.org/
https://github.com/leanprover-community/mathlib
http://mizar.org/
https://github.com/jrh13/hol-light
https://www.isa-afp.org/statistics/

Libraries of formal proofs today

Library Nb files | Nb objects™
Coq Opam 37,700 1,285,000
Isabelle AFP 8,700 272,000
Lean Mathlib 4,600 238,000
Mizar Mathlib 1,400 77,000
HOL-Light Lib 635 36,500
* type, definition, theorem, ... (July 2024)

LOC
3500000
3000000
2500000
2000000
1500000
1000000
500000
o e l
SEFS

................

» Every system has its own basic libraries on integers, lists, reals, ...

> Some definitions/theorems are available in one system only
and took several man-years to be formalized

https://github.com/coq/opam
https://www.isa-afp.org/
https://github.com/leanprover-community/mathlib
http://mizar.org/
https://github.com/jrh13/hol-light
https://www.isa-afp.org/statistics/

Interest of proof systems interoperability

Avoid duplicating developments and losing time
Facilitate development of new proofs and new systems
Increase reliability of formal proofs (cross-checking)
Facilitate validation by certification authorities
Relativize the choice of a system (school, industry)

Provide multi-system data to machine learning

Difficulties of proof systems interoperability

» Each system is based on different axioms and deduction rules

» It is usually non trivial and sometimes impossible to translate a
proof from one system to the other (e.g. a proof using
impredicativity or proof irrelevance in a system not allowing
these features)

vy

1993:

1996:
1998:
2003:

2007:

2009:
2011:
2013:

2020:

Some milestones

QED Manifesto
DIMACS format for CNF problems
TPTP format for FOL problems [Sutcliffe & al]

HOL90 to NuPRL translator [Howe, statements only]
MathML/OpenMath/OMDoc [Kohlhase & al]

TPDB format for rewrite systems

TSTP proof format for ATPs

SMT-lib format for FOL/T problems

Flyspeck project with HOL-Light, Coq and Isabelle/HOL

Functional PTSs in Al1/R [Cousineau & Dowek]
OpenTheory proof format for HOL-based proof assistants

CPF proof format for termination provers
Logic Atlas & Integrator [Kohlhase & al]

DRAT proof format for SAT solvers [Heule & al]
MMT /Modules for Mathematical Theories [Rabe & al]

Alethe proof format for SMT solvers [Fontaine & al]

https://en.wikipedia.org/wiki/QED_manifesto
http://archive.dimacs.rutgers.edu/pub/challenge/satisfiability/doc/
https://tptp.org/
https://www.w3.org/Math/
https://openmath.org/
https://www.omdoc.org/
https://www.lri.fr/~marche/tpdb/
https://tptp.org/TSTP/
http://smtlib.cs.uiowa.edu/
https://code.google.com/archive/p/flyspeck/
http://doi.org/10.1007/978-3-540-73228-0_9
https://www.gilith.com/opentheory/
http://cl-informatik.uibk.ac.at/software/cpf/
https://kwarc.info/projects/latin/
https://www.cs.utexas.edu/~marijn/drat-trim/
https://uniformal.github.io/
https://verit.loria.fr/documentation/alethe-spec.pdf

One-to-one translation tools
» HOL90 to NuPRL [Howe 1996, statements only]
» HOL98 to Coq [Denney 2000]

» HOL98 to NuPRL [Naumov et al 2001]
Flyspeck project with HOL-Light, Coq and Isabelle/HOL [2003]

HOL to Isabelle/HOL [Obua 2006]

Isabelle/HOL to HOL-Light [McLaughlin 2006]
HOL-Light to Coq [Wiedijk 2007, no implementation]
HOL-Light to Coq [Keller & Werner 2010]
HOL-Light to HOL4 [Kumar 2013]

HOL-Light to Metamath [Carneiro 2016]

HOL4 to Isabelle/HOL [Immler et al 2019]

Lean3 to Coq [Gilbert 2020]

Lean3 to Lean4 [Lean community 2021]

Maude to Lean [Rubio & Riesco 2022]

VVyVVVVYVVVYVYYVYY

Interoperability between n systems 7
1 1

2 2
3 3
n n

n(n — 1) translators

Interoperability between n systems 7

1 1 1
N

2 2
|
3 N 3

n(n — 1) translators n translators

Interoperability between n systems 7
1 1

PN
2 2 T 2
: : i

n n

n(n — 1) translators n translators

<«

Can’t we be more generic 7

1 1
37 is
n n

2n translators

A common language for proofs?

A logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D/S in D

How to translate a proof t € A in a proof u € B
via a logical framework D?

system A D/A D/B system B
1. translate t € Ain t' € D/A

3. translate v € D/Binue B

How to translate a proof t € A in a proof u € B
via a logical framework D?

system A D/A D/B system B

. translate t € Ain t' € D/A

. identify the axioms and deduction rules of A used in t/
translate t' € D/A in ' € D/B if possible

. translate v € D/Binu € B

How to translate a proof t € A in a proof u € B
via a logical framework D7

system A D/A D/B system B

1. translate t € Ain t' € D/A

2. identify the axioms and deduction rules of A used in t/
translate t' € D/A in u' € D/B if possible

3. translate v € D/Binue B

= represent features common to A & B identically in D/A & D/B

A common language for proofs?

A logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D/S in D

Example: D = predicate calculus

allows one to represent S=geometry, S=arithmetic, S=set theory, ...

not well suited for computation and dependent types

https://www.lix.polytechnique.fr/~dale/lProlog/
http://twelf.org
https://isabelle.in.tum.de/
https://us.metamath.org/
https://uniformal.github.io/

A common language for proofs?

A logical framework D

language for describing axioms, deduction rules and proofs of a
system S as a theory D/S in D

Example: D = predicate calculus

allows one to represent S=geometry, S=arithmetic, S=set theory, ...

not well suited for computation and dependent types
Better: D = All-calculus modulo rewriting/Dedukti

allows one to represent also:
S5=HOL, S=Coq, S=Agda, S=PVS, ...

other options: AProlog, Twelf, Isabelle, Metamath, MMT, ...

https://www.lix.polytechnique.fr/~dale/lProlog/
http://twelf.org
https://isabelle.in.tum.de/
https://us.metamath.org/
https://uniformal.github.io/

Dedukti, an assembly language for proof systems

Cubical TT FoCalLiZe SMT solvers

© Lean / —
Agda

Coq
Matita ~—— Mizar

cveh, veriT

HOL-Light

<

OpenTheory <—>

o automated
/ Lambdapi |+~— PVS —— provers
Isabell A Vampire, E, ...
sabelle ICSPA project /
K o -

TLAPS — AtelierB

Lambdapi = Dedukti + implicit arguments/coercions, tactics, . ..

All translation tools are available on https://github.com/Deducteam/

https://github.com/Deducteam/

Libraries translated to Dedukti

System Libraries
OpenTheory OpenTheory Library
HOL-Light | Multivariate #W (all ML files soon?)
Matita Arithmetic Library
Coq Stdlib parts, GeoCoq parts
Isabelle HOL session, AFP parts ## (AFP soon?)
Agda Stdlib parts (£ 25%)
PVS Stdlib parts (statements only)
TPTP E 69%, Vampire 83% (for CNF only)
integration in TPTP World via GDV et

Libraries translated to Dedukti

System Libraries
OpenTheory OpenTheory Library
HOL-Light | Multivariate #W (all ML files soon?)
Matita Arithmetic Library
Coq Stdlib parts, GeoCoq parts
Isabelle HOL session, AFP parts ## (AFP soon?)
Agda Stdlib parts (£ 25%)
PVS Stdlib parts (statements only)
TPTP E 69%, Vampire 83% (for CNF only)
integration in TPTP World via GDV et

Remark: Dedukti libraries can be searched by using Lambdapi
index and search commands (Claudio Sacerdoti Coen)

Examples of translations via Dedukti

Matita arith lib — OpenTheory, Coq, PVS, Lean [Thiré 2018]
http://logipedia.inria.fr

Matita arith lib — Agda [Felicissimo 2023] ue#
https://github.com/thiagofelicissimo/matita_lib_in agda

HOL-Light — Coq [B. 2024] uew
https://github.com/Deducteam/hol2dk/

Isabelle/HOL — Coq (work in progress) s

[B., Dubut, Yamada, Leray, Farber, Wenzel]
https://github.com/Deducteam/isabelle _dedukti/

http://logipedia.inria.fr
https://github.com/thiagofelicissimo/matita_lib_in_agda
https://github.com/Deducteam/hol2dk/
https://github.com/Deducteam/isabelle_dedukti/

Outline

How to encode logics in Al/R ?

What is the All-calculus modulo rewriting?

AM/R = A simply-typed A-calculus
+ 1 dependent types, e.g. Array n
+ R identification of types modulo rewrites rules / < r

What is the All-calculus modulo rewriting?

AM/R = A simply-typed A-calculus
+ 1 dependent types, e.g. Array n
+ R identification of types modulo rewrites rules / < r

typing = typing of Edinburg’s Logical Framework LF including:

(abs) MNx:AFt:B TFIMx:A B:TYPE x ¢ I types of
FIEXx:At:lNx:AB local variables
N=t:Mx:AB ITFu:A
(app)

M= tu: B{x — u}

Ft:A A=pr B =4 equational theory
lr-t:B generated by 8 and R

+ the rule (conv)

concat : lMp : N,Array p — Ngq : N,Array g — Array(p + q)
concat 2 a 3 b : Array(2 + 3) =5 Array(5)

First-order logic

the set of terms
built from a set of function symbols equipped with an arity

the set of propositions
built from a set of predicate symbols equipped with an arity
and the logical connectives T, L, =, =, A, V, &, V, 3

the set of axioms (the actual theory)

the subset of provable propositions
using deduction rules, e.g. natural deduction:

. NA-B ! IN-A=B TFHA
(S-intro) m——g (elim) B
A xé¢rm M=vx, A
V-int _— V-elim) ————
(Veintro) — i~ (Veelim) ey

Encoding of first-order logic

> the set of terms | : TYPE
built from a set of function symbols equipped with an arity
function symbol: | — ... > — |

Encoding of first-order logic

> the set of terms | : TYPE
built from a set of function symbols equipped with an arity
function symbol: | — ... > — |

> the set of propositions Prop : TYPE
built from a set of predicate symbols equipped with an arity
predicate symbol: | — ... — | — Prop

Encoding of first-order logic

> the set of terms | : TYPE
built from a set of function symbols equipped with an arity
function symbol: | — ... > — |

> the set of propositions Prop : TYPE
built from a set of predicate symbols equipped with an arity
predicate symbol: | — ... — | — Prop
and the logical connectives T, L, =, =, A, V, &, V, 3
T : Prop, = : Prop — Prop, ¥ : (I — Prop) — Prop, ...
we use A-calculus to encode quantifiers:
we encode Vx, A as V(Ax : [, A)

Encoding of first-order logic

> the set of terms | : TYPE
built from a set of function symbols equipped with an arity
function symbol: | — ... > — |

> the set of propositions Prop : TYPE
built from a set of predicate symbols equipped with an arity
predicate symbol: | — ... — | — Prop
and the logical connectives T, L, =, =, A, V, &, V, 3
T : Prop, = : Prop — Prop, ¥ : (I — Prop) — Prop, ...
we use A-calculus to encode quantifiers:
we encode Vx, A as V(Ax : [, A)
how to encode proofs?

> the set of axioms (the actual theory)

> the subset of provable propositions
using deduction rules, e.g. natural deduction

Using A\-terms to represent proofs
(Curry-de Bruijn-Howard isomorphism)

by interpreting propositions as types (=/—, V/I1)
the typing rules of AT correspond to the rules of natural deduction:

Mx:AFt:B
N=Xx:At:A=B

lN~t:A=B I+u:A

(=-intro)

—eli
(S-elim) FFw: B
. N-t:A x¢r
(Fintro) — x A
. M=t:Vx,A
(V-elim)

M= tu: A{(x,u)}

and proof checking is reduced to type checking

Expliciting the Brouwer-Heyting-Kolmogorov interpretation

terms of type Prop are not types. ..

but we can interpret a proposition as a type by applying:

Prf : Prop — TYPE

Prf A is the type of proofs of proposition A

Expliciting the Brouwer-Heyting-Kolmogorov interpretation

terms of type Prop are not types. ..

but we can interpret a proposition as a type by applying:

Prf : Prop — TYPE

Prf A is the type of proofs of proposition A

but
Ax:Prf A)x :© PrfA— Prf A

and
Ax: Prf A,x [Prf(A= A)

Expliciting the Brouwer-Heyting-Kolmogorov interpretation

terms of type Prop are not types. ..

but we can interpret a proposition as a type by applying:

Prf : Prop — TYPE

Prf A is the type of proofs of proposition A

but
Ax:Prf A)x :© PrfA— Prf A

and
Ax: Prf A,x [Prf(A= A)

unless we add the rewrite rule

|Prf(A=B) < PrfA— PrfB|

Encoding =

because Prf(A=- B) — Prf A— Prf B

the introduction rule for = is the abstraction:

Mx:PrfAFt: Prf B

A B (abs)

IR FTFAx:At:PrfA— PrfB
r-A= B8 (conv)

N=Ax:At: Prf(A= B)

(=-intro)

Encoding =

because Prf(A=- B) — Prf A— Prf B

the introduction rule for = is the abstraction:

Mx:PrfAFt: Prf B
Mr=-Xx:At:PrfA— Prf B
N=Ax:At: Prf(A= B)

AFB (abs)

(=-intro) TEAS B (conv)

the elimination rule for = is the application:

rN-A=B8 THA
=B

F=t: Prf(A= B)

r-t:PrfA—pPrfB ThHu:PrfA
= tu: Prf B

(=-elim)

(conv)

(app)

Encoding V

we can do something similar for V : (I — Prop) — Prop by taking:
Prf(YVA) — Mx:I,Prf(Ax)

then the introduction rule for V is the abstraction
and the elimination rule for V is the application

Encoding the other connectives

the other connectives can be defined
by using a meta-level quantification on propositions:

Prf(AANB) — NC: Prop,(Prf A— Prf B — Prf C) — Prf C

Encoding the other connectives

the other connectives can be defined
by using a meta-level quantification on propositions:

Prf(ANB) — TNC: Prop,(Prf A— Prf B— Prf C) — Prf C

introduction and elimination rules can be derived:
(A-intro):

Aa: Prf A Ab: Prf B,\C : Prop,\h: Prf A— Prf B — Prf C, hab
is of type
Prf A— Prf B — Prf(AA B)

(A-elim1):

Ac: Prf(ANB),cA(Xa: Prf A, A\b: Prf B, a)
is of type
Prf(ANB) — Prf A

To summarize: AI1/R-theory FOL for first-order logic

signature X ror:

| : TYPE
fol—...—=>1—1 for each function symbol f of arity n
Prop : TYPE

P:l—...—1— Prop for each predicate symbol P of arity n
T : Prop, —: Prop — Prop, V : (I — Prop) — Prop, ...

Prf : Prop — TYPE

a:PrfA for each axiom A

rules RFOL:

Prf(A= B) < Prf A — Prf B
Prf(YA) < MNx : I, Prf(Ax)
Prf(AAB) < NC : Prop,(Prf A— Prf B — Prf C) — Prf C
Prf 1L — MNC : Prop, Prf C
Prf(—=A) < PrfA — Prf L

Encoding of first-order logic in Al/FOL

encoding of terms: encoding of propositions:
x| = x |Pty...ta| = Plti]...|tn]
Ifty. .. tal = Flta] ... [ta] |TI=T
|ANB| = [A[A]B|
|Vx, Al = V(Ax : [,]A|)

T, Al =T, X410 A
encoding of proofs:

T, A-B

frA=B 7

= AXrj+1 : Pr|Al |7 ars]

TrFA=B TTHA (=)
N-B ©

= |7rﬂ—A:>B’ ’WFI—A’

Properties of the encoding in AlN/FOL

> a term is mapped to a term of type /
» a proposition is mapped to a term of type Prop

» a proof of A is mapped to a term of type Prf |A|

Properties of the encoding in AlN/FOL

> a term is mapped to a term of type /
» a proposition is mapped to a term of type Prop
» a proof of A is mapped to a term of type Prf |A|

if we find t of type Prf |A|, can we deduce that A is provable ?

Properties of the encoding in AlN/FOL

P> a term is mapped to a term of type /
» a proposition is mapped to a term of type Prop
» a proof of A is mapped to a term of type Prf |A|

if we find t of type Prf |A|, can we deduce that A is provable ?

> ves, the encoding is conservative:
if Prf |A| is inhabited then A is provable

proof sketch: because < g terminates and is confluent, t has a
normal form, and terms in normal form can be easily translated
back in first-order logic and natural deduction

Multi-sorted first-order logic

for each sort I (e.g. point, line, circle), add:

I : TYPE
Yk : (Ix = Prop) — Prop

Prf(ViA) — MNx : Iy, Prf(Ax)

Polymorphic first-order logic

same trick as for the BHK interpretation of propositions:

Set : TYPE type of sorts
El : Set — TYPE interpretation of sorts as types
L Set for each sort ¢

V:MNa: Set,(El a — Prop) — Prop

Prf(Vap) < MNx : El a, Prf(px)

Higher-order logic

order quantification on
1 elements
2 sets of elements
3 sets of sets of elements

w any set

Higher-order logic

order quantification on
1 elements
2 sets of elements
3 sets of sets of elements
w any set

quantification on functions:
~» . Set — Set — Set
El(a~>b) — Ela— Elb

Higher-order logic

order quantification on
1 elements
2 sets of elements
3 sets of sets of elements
w any set

quantification on functions:
~» . Set — Set — Set
El(a~>b) — Ela— Elb

quantification on propositions/impredicativity (e.g. Vp, p = p):
o : Set
El o — Prop

Encoding dependent constructions

dependent implication:
=4 : Ma: Prop, (Prf a— Prop) — Prop
Prf(a=-4 b) < MNx : Prf a, Prf(bx)

Encoding dependent constructions

dependent implication:
=4 : Ma: Prop, (Prf a— Prop) — Prop
Prf(a=-4 b) < MNx : Prf a, Prf(bx)

dependent types:
~>q: Ma: Set,(Ela — Set) — Set
El(a~»4 b) — MNx : El a, EI(bx)

Encoding dependent constructions

dependent implication:
=4 : Ma: Prop, (Prf a— Prop) — Prop
Prf(a=-4 b) < MNx : Prf a, Prf(bx)

dependent types:
~>q: Ma: Set,(Ela — Set) — Set
El(a~»4 b) — MNx : El a, EI(bx)

proofs in object-terms:
m: Mp: Prop, (Prf p — Set) — Set
El(mpa) — MNx : Prf p, El(ax)
example: div : El(t~t~>g Ay : Elv,m(y > 0)(A, 1))

takes 3 arguments: x : Elv, y : Elv, p: Prf(y > 0)
and returns a term of type El¢

Encoding the systems of Barendregt's A\-cube

system PTS rule AM/R rule

simple types TYPE, TYPE | Prf(a=4 b) < lx : Prf a, Prf(bx)
polymorphic types | KIND, TYPE Prf(Vab) < MNx : El a, Prf(bx)
dependent types | TYPE,KIND El(mwab) < MNx : Prf a, EI(bx)
type constructors | KIND,KIND El(a~>4 b) — Nx : El a, EI(bx)

type
constructors .
polymorphic

types

adding dependent
types

The modular A/R theory U and its sub-theories
[B., Dowek, Grienenberger, Hondet, Thiré 2021]

P?"fc, =, Nes Vcavca EIc

0

succ
pred
positive

Tﬁ:: —L7 =, Ay V, =

Lambdapi files

http://doi.org/10.46298/lmcs-19(1:12)2023
https://github.com/Deducteam/lambdapi-logics/tree/master/U

Functional Pure Type Systems (S, A,P) ACS2,PC &2 xS

terms and types:

t=x|tt|Ax:t,t|MNx:t,t]|seS

typing rules:
Nr-A:s N (x,A)er
0 T,x:AF MEx:A
N (s1,:2)eA
N-51:5
FrA:s; Tox:AFB:s ((s1,5),s53) € P
(prod)
NETMx:AB:s3
Nx:AFt:B THINx:AB:s TFHt:MIx:AB TFu:A
NEXx:At:Nx:AB M= tu: B{(x,u)}
FEt:A Acg A THEA s
M=t: A

(sort)

Encoding Functional Pure Type Systems
[Cousineau & Dowek 2007]

signature:

Us : TYPE for each sort s € S
Els : Us — TYPE

s1: Us, for every (s1,s2) € A

Ts s - Ma: Us, (Elsy a— Us,) = Us, for every ((s1,%2),s3) € P

rules:

Els, s1 — Us, for every (s1,5) € A
Els,(7s,.5, ab) <= Nx : Els, a, Els,(bx) for every ((s1,s2),s3) € P

encoding:
Ix|r = x
Islr =
[Ax © A, tlr = Ax ELIA|, [t]r <A flfr-A:s
|tulr = [t[r|ulr
“_IX LA, B’r = 7T51752’A’r()‘x : EIS1’A’r7 ’B‘RXSA)
fFTFA:ssand N, x: AFB: s

Encoding other features

» recursive functions [Assaf 2015, Cauderlier 2016, Férey 2021]
— different approaches, no general theory (use recursors?)

» universe polymorphism [Genestier 2020]

— requires rewriting with matching modulo AC
or rewriting on AC canonical forms [B. 2022]

» 1-conversion on function types [Genestier 2020]
» predicate subtyping with proof irrelevance [Hondet 2020]

» co-inductive objects and co-recursion [Felicissimo 2021]

Outline

Example: from HOL-Light to Coq via Lambdapi

Previous works & tools on HOL to Coq

» Denney 2000: translates HOL98 proofs to Coq scripts using
some intermediate stack-based machine language

> Wiedijk 2007: describes a manual translation of HOL-Light
proofs in Coq terms via a shallow embedding (no implem)

> Keller & Werner 2010: translates HOL-Light proofs to Coq
terms via a deep embedding & computational reflection

Previous works & tools on HOL to Coq

» Denney 2000: translates HOL98 proofs to Coq scripts using
some intermediate stack-based machine language

> Wiedijk 2007: describes a manual translation of HOL-Light
proofs in Coq terms via a shallow embedding (no implem)

> Keller & Werner 2010: translates HOL-Light proofs to Coq
terms via a deep embedding & computational reflection

> B. 2023: implements Wiedijk approach via a shallow
embedding in Lambdapi using results and ideas from:
— Assaf & Burel (translation of OpenTheory to Dedukti, 2015)
— Kaliszyk & Krauss (translation of HOL-Light to Isabelle, 2013)

HOL-Light logic
Terms: simply typed A\-terms with prenex polymorphism (OCaml)

Rules:
lFs=t AFt=u

REFL TRAN
Ft=t FTUAFs=u >
Fs=t A'_UZVI\/IKCOI\/IB Fs=t ABS
FTUAF su=tv - M- Ax,s = Ax, t
————— BETA —— ASSUME
F(Ax, t)x=t {p}EPp
lN=p=q AFp
FTUAFg EQ-MP
'-p ACq DEDUCT_ANTISYM_RULE
(MT—{ahu(a-{p)Frp=gq i i
MN=p MN=p
INST INST_TYPE

ror po ror po

HOL-Light logic: connectives are defined from equality!
(Andrews QO logic)

T =der (Ap.p) = (Ap.p)

N =def AP-AG.(Af.fpq) = (Af.fTT)
= =def AP-AQ.(PAG)=p

V o =der Ap.p=(Ax.T)

=def AP.Vq.(Vx.px = q) = q
—def vP.P

=def Ap-p= L

< w

Term and type definitions in HOL-Light

> One can give a name c to a term t of type A by adding:

— a typed constant c:A
— an axiomc = t

Term and type definitions in HOL-Light

> One can give a name c to a term t of type A by adding:

— a typed constant c:A
— an axiomc = t

» One can give a name B to a type isomorphic to the set of terms
of type A satisfying some predicate p:A->bool by adding:
— a type constant B
— a proof of Ja.p a
— a typed constant mk:A->B
— a typed constant dest:B->A
— an axiom Vb:B.mk(dest b) = b
— an axiom Va:A.p a = (dest(mk a) = a)

mk

dest

Step 1: extract proofs out of HOL-Light
HOL-Light uses the LCF approach:

it records provability and not proofs

type thm = Sequent of (term list * term)

val REFL : term -> thm

val TRANS : thm -> thm -> thm

val MK_COMB : thm * thm -> thm

val ABS : term -> thm -> thm

val BETA : term -> thm

val ASSUME : term -> thm

val EQ_MP : thm -> thm -> thm

val DEDUCT_ANTISYM_RULE : thm -> thm -> thm

val INST_TYPE : (hol_type * hol_type) list -> thm -> thm
val INST : (term * term) list -> thm -> thm

Step 1: extract proofs out of HOL-Light
HOL-Light uses the LCF approach:

it records provability and not proofs

we need to patch it to export proofs (Obua 2005, Polu 2019):

type thm = Sequent of (term list * term * int)
(* theorem identifier *)
val REFL : term -> thm
val TRANS : thm -> thm -> thm
val MK_COMB : thm * thm -> thm
val ABS : term -> thm -> thm
val BETA : term -> thm
val ASSUME : term -> thm
val EQ_MP : thm -> thm -> thm
val DEDUCT_ANTISYM_RULE : thm -> thm -> thm
val INST_TYPE : (hol_type * hol_type) list -> thm -> thm
val INST : (term * term) list -> thm -> thm

type proof = Proof of (thm * proof_content)
and proof_content =

| Prefl of term

| Ptrans of int * int

loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads
loads

Base HOL-Light library: hol.ml

"pair.ml";;
"compute.ml";;
"nums.ml";;
"recursion.ml";;
"arith.ml";;
"wf.ml";;
"calc_num.ml";;
"normalizer.ml";;
"grobner.ml";;
"ind_types.ml";;
"lists.ml";;
"realax.ml";;
"calc_int.ml";;
"realarith.ml";;
"real.ml";;
"calc_rat.ml";;
"int.ml";;
"sets.ml";;
"iterate.ml";;
"cart.ml";;
"define.ml";;

(x
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(*
(x
(*
(x
(*
(*
(*
(*
(*

Theory of pairs

General call-by-value reduction tool for ter
Axiom of Infinity, definition of natural num
Tools for primitive recursion on inductive t
Natural number arithmetic

Theory of wellfounded relations

Calculation with natural numbers

Polynomial normalizer for rings and semiring
Groebner basis procedure for most semirings
Tools for defining inductive types

Theory of lists

Definition of real numbers

Calculation with integer-valued reals
Universal linear real decision procedure
Derived properties of reals

Calculation with rational-valued reals
Definition of integers

Basic set theory

Iterated operations

Finite Cartesian products

Support for general recursive definitions

Step 2: simplify HOL-Light proofs
the number of generated proof steps can be reduced as follows:

> instrument connectives intro/elim rules & a-equivalence (20%!)

Step 2: simplify HOL-Light proofs

the number of generated proof steps can be reduced as follows:
> instrument connectives intro/elim rules & a-equivalence (20%!)

> rewrite proofs:

SYM(REFL(t))
SYM(SYM(p))
TRANS(REFL(t),p)
TRANS(p,REFL(t))
CONJUNCT1(CONJ(p,))
CONJUNCT2(CONJ(_p))
MKCOMB(REFL(t),REFL(u))
EQMP(REFL(.),p)

REFL(t)

R RN
T VT T T T T

EFL(t(u))

Step 2: simplify HOL-Light proofs
the number of generated proof steps can be reduced as follows:
> instrument connectives intro/elim rules & a-equivalence (20%!)

> rewrite proofs:

SYM(REFL(t))
SYM(SYM(p))
TRANS(REFL(t),p)
TRANS(p,REFL(t))
CONJUNCT1(CONJ(p,))
CONJUNCT2(CONJ(_p))
MKCOMB(REFL(t),REFL(u)) REFL(t(u))
EQMP(REFL(.),p) P

» remove useless proof steps (because of tactic failures)

REFL(t)

TILLLLLSL

Step 2: simplify HOL-Light proofs
the number of generated proof steps can be reduced as follows:
> instrument connectives intro/elim rules & a-equivalence (20%!)

> rewrite proofs:

SYM(REFL(t)) < REFL(t)
SYM(SYM(p)) < p
TRANS(REFL(t),p) < p
TRANS(p,REFL(t)) < p
CONJUNCT1(CONJ(p,))) < p
CONJUNCT2(CONJ(-,p)) < p

MKCOMB(REFL(t),REFL(u)) <> REFL(t(u))

EQMP(REFL(.).p) <> p

» remove useless proof steps (because of tactic failures)

initial number of with basic tactics and simplification
steps for hol.ml instrumentation and purge
143 M 8.6 M (-40%) 3.5 M (-76%)

hol .ml: theory of integers, lists, real numbers, etc.

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/% Encoding of HOL-Light types as terms of type Set */
constant symbol Set : TYPE;

constant symbol bool : Set;
constant symbol fun : Set — Set — Set;

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/% Encoding of HOL-Light types as terms of type Set */
constant symbol Set : TYPE;

constant symbol bool : Set;

constant symbol fun : Set — Set — Set;

/* Interpretation of HOL-Light types as Lambdapi types */
injective symbol El1 : Set — TYPE;
rule El1(fun $a $b) — E1 $a — E1 $b;

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/% Encoding of HOL-Light types as terms
constant symbol Set : TYPE;

constant symbol bool : Set;

constant symbol fun : Set — Set — Set;

/* Interpretation of HOL-Light types as
injective symbol El1 : Set — TYPE;
rule El1(fun $a $b) — E1 $a — E1 $b;

/* HOL-Light primitive constants */
constant symbol = [A] : El1(fun A (fun A
symbol € [A] : El1 (fun (fun A bool) A);

of type Set */

Lambdap1

bool));

types */

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/% Encoding of HOL-Light types as terms of type Set */
constant symbol Set : TYPE;

constant symbol bool : Set;

constant symbol fun : Set — Set — Set;

/* Interpretation of HOL-Light types as Lambdapi types */
injective symbol El1 : Set — TYPE;
rule El1(fun $a $b) — E1 $a — E1 $b;

/* HOL-Light primitive constants */
constant symbol = [A] : E1(fun A (fun A bool));
symbol € [A] : El1 (fun (fun A bool) A);

/* Interpretation of HOL-Light propositions as Lambdapi types
(Curry -Howard correspondence to be defined) */
injective symbol Prf : E1l bool — TYPE;

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* HOL-Light axzioms and rules */
symbol REFL [al (t : El a) : Prf(= t t);
symbol MK_COMB [a b] [s t : El(fun a b)] [u v : El al
Prf(= s t) —» Prf(= u v) — Prf(= (s u) (t v));
symbol EQ_MP [p ql : Prf(= p q) — Prf p — Prf q;
symbol fun_ext [a b] [f g : E1 (fun a b)]
(N x, Prf (= (£ x) (g x))) — Prf (= £ g);
symbol prop_ext [p ql :
(Prf p =+ Prf q) = (Prf q — Prf p) = Prf (= p q);

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* HOL-Light axzioms and rules */

symbol REFL [al (t : El a) : Prf(= t t);
symbol MK_COMB [a b] [s t : El(fun a b)] [u v : El al
Prf(= s t) —» Prf(= u v) — Prf(= (s u) (t v));
symbol EQ_MP [p ql : Prf(= p q) — Prf p — Prf q;
symbol fun_ext [a b] [f g : E1 (fun a b)]
(N x, Prf (= (£ x) (g x))) = Prf (= £ g);

symbol prop_ext [p ql :
(Prf p =+ Prf q) — (Prf q — Prf

/% HOL-Light derived connectives
constant symbol = : E1 (fun bool
rule Prf(= $p $q) — Prf $p — Prf

p) — Prf (= p q);

*/
(fun bool bool));
$q;

constant symbol V [A] : E1 (fun (fun A bool) bool);

rule Prf(V $p) — M x,Prf($p x);

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* HOL-Light axzioms and rules */
symbol REFL [a]l (t : El a) : Prf(= t t);
symbol MK_COMB [a bl [s t : El1(fun a b)] [u v : El1 a]
Prf(= s t) —» Prf(= u v) — Prf(= (s u) (t v));
symbol EQ_MP [p q] : Prf(= p q) — Prf p — Prf q;
symbol fun_ext [a b] [f g : El (fun a b)]
(N x, Prf (= (£ x) (g x))) = Prf (= £ g);
symbol prop_ext [p ql :
(Prf p =+ Prf q) = (Prf q — Prf p) = Prf (= p q);

/% HOL-Light derived connectives */

constant symbol = : E1 (fun bool (fun bool bool));
rule Prf(= $p $q) — Prf $p — Prf $q;

constant symbol V [A] : E1 (fun (fun A bool) bool);
rule Prf(V $p) — M x,Prf($p x);

/* Natural deduction rules */
symbol Ai [p] : Prf p — lN[ql,Prf q — Prf(A p q);
symbol Ael [p q] : Prf(A p q) — Prf p;
symbol Ae2 [p q] : Prf(A p q) — Prf q;
symbol Ji [al] (p : El a — E1 bool) t : Prf(p t) — Prf(3 p);
symbol Je [al] [p : E1 a — E1 booll]
Prf (3(X x,p x)) — MN[r],(x:E1 a,Prf(p x) — Prf r) — Prf r;

Step 4: from Lambdapi to Coq

the translation is purely syntactic:

» the symbols El and Prf are removed

» some symbols are replaced by Coq expr. wrt a user-defined map:

HOL-Light | Lambdapi Coq
hol_type Set {type:>Type; el:type}
fun arr —>
bool bool Prop
= = eq
Prefl REFL eq_refl
==> = —>
/\ A and
num num nat
+ + add
<= <= le
example output:
Lemma thm_DIV_MQOD forall m nat, forall n : nat,

forall p : nat, (MOD (DIV m n) p) = (DIV (MOD m (mul n p)) n).

Step 5: alignment of definitions

» One can give a name c to a term t of type A by adding:
— a typed constant c:A
— an axiomc = t

Step 5: alignment of definitions

» One can give a name c to a term t of type A by adding:
— a typed constant c:A
— anaxiomc =t
to replace ¢ by the Coq expression c’, we need to do in Coq:

- prove

Step 5: alignment of definitions

» One can give a name c to a term t of type A by adding:
— a typed constant c:A
— anaxiomc =t
to replace ¢ by the Coq expression c’, we need to do in Coq:

» One can give a name B to a type isomorphic to the set of terms
of type A satisfying some predicate p:A->bool by adding:
— a type constant B

a proof of Ja.p a

a typed constant mk:A->B

a typed constant dest:B->A

— an axiom Vb:B.mk(dest b) = b

— an axiom Va:A.p a = (dest(mk a) = a)

to replace B by the Coq expression B’, we need to do in Coq:

- define
- define

~ prove |Vb:B’, mk(dest b) = b|

prove‘Va:A, p a = (dest(mk a) = a)‘

Alignments already proved

connectives
unit type

product type constructor

vvyyvyy

type of natural numbers, addition, substraction, multiplication,
division, power, ordering, min, max, mod, even, odd, ...

v

option type constructor

v

sum type constructor

P list type constructor, head, tail, concatenation, reverse, length,
map, forall, membership, ... (thanks to Anthony Bordg)

and we are currently working on the type of real numbers

HOL-Light library in Coq

available on Opam:
https://github.com/deducteam/coq-hol-light/

currently contains 667 lemmas on logic, arithmetic and lists mainly

usage in Coq:

Require Import HOLLight.hol_light.

https://github.com/deducteam/coq-hol-light/

Axioms required in Coq

Axiom classic (P : Prop) : P \/ = P.

Axiom constructive_indefinite_description (A : Type) P
(exists x, P x) -> {x : A | P x}.

Axiom fun_ext {A B: Typel} {f g: A -> B}:
(forall x, £ x = g x) -> f = g.

Axiom prop_ext {P Q : Prop} : (P -> Q) -> (Q -> P) -> P = Q.

Axiom proof_irrelevance (P:Prop) (pl p2 : P) : pl = p2.

Performances

The translations (HOL-Light to Lambdapi, and Lambdapi to Coq)
and the verification by Coq can be done in parallel by generating
a Lambdapi/Coq file for each HOL-Light user-defined theorem

To scale up, we also need to share types and terms

On a machine with 32 processors i9-13950HX and 64Gb RAM:

HOL-Light file | dump-simp | dump size | proof steps | nb theorems
hol . ml 3m57s 3Gb 5M 5679
topology . ml 48m 52 Gb 52 M 18866
HOL-Light file | make -j32 Ip | make -j32 v | v files size | make -j32 vo
hol . ml 51s 55s 1Gb 18m4s
topology.ml 22m22s 20m16s 638 Gb 8h

Tools: hol2dk and lambdapi

» https://github.com/Deducteam/hol2dk

— provides a small patch for HOL-Light to export proofs
improves ProofTrace [Polu 2019] by reducing memory
consumption and adding on-the-fly writing on disk

— translates HOL-Light proofs to Dedukti and Lambdapi

» https://github.com/Deducteam/lambdapi

— allows to converts dk/Ip files using some encodings of HOL
into Coq files

https://github.com/Deducteam/hol2dk
https://github.com/Deducteam/lambdapi

Conclusion

interoperability theory/tools developed for 30 years now
but few tools are really usable for lack of maintenance

significant progresses have been done on genericity
by using the AlM-calculus modulo rewriting/Dedukti

works well for medium-size developments with simple structures
(integers, lists, ...) and automated theorem provers, e.g.
integration of Lambdapi in TPTP World/GDV [Sutcliffe] #e#

some people are skeptikal on the usability of translations on
complex structures but some progress is ongoing, e.g. translation
of type classes between Isabelle & Coq [Sacerdoti & Tassi] #ew

improving scalability, modularity, usability and reproducibility are
exciting research problems!

	Historical overview on proof systems interoperability
	How to encode logics in /R ?
	Example: from HOL-Light to Coq via Lambdapi

