
Translating HOL-Light proofs to Coq

Frédéric Blanqui

https://blanqui.gitlabpages.inria.fr/
https://www.inria.fr/
https://europroofnet.github.io/

Libraries of formal proofs today

Library Nb files Nb objects∗

Coq Opam 35,000 1,200,000
Isabelle AFP 7,500 280,000
Lean Mathlib 4,200 210,000
Mizar Mathlib 1,400 77,000
HOL-Light 635 37,000

.

LOC

∗ type, definition, theorem, . . .

▶ Every system has its own basic libraries on integers, lists, reals, . . .

▶ Some definitions/theorems are available in one system only
and took several man-years to be formalized

https://github.com/coq/opam
https://www.isa-afp.org/
https://github.com/leanprover-community/mathlib
http://mizar.org/
https://github.com/jrh13/hol-light
https://www.isa-afp.org/statistics/

Libraries of formal proofs today

Library Nb files Nb objects∗

Coq Opam 35,000 1,200,000
Isabelle AFP 7,500 280,000
Lean Mathlib 4,200 210,000
Mizar Mathlib 1,400 77,000
HOL-Light 635 37,000

.

LOC

∗ type, definition, theorem, . . .

▶ Every system has its own basic libraries on integers, lists, reals, . . .

▶ Some definitions/theorems are available in one system only
and took several man-years to be formalized

https://github.com/coq/opam
https://www.isa-afp.org/
https://github.com/leanprover-community/mathlib
http://mizar.org/
https://github.com/jrh13/hol-light
https://www.isa-afp.org/statistics/

Interest of proof system interoperability

▶ Avoid duplicating developments and losing time

▶ Facilitate development of new proofs and new systems

▶ Increase reliability of formal proofs (cross-checking)

▶ Facilitate validation by certification authorities

▶ Relativize the choice of a system (school, industry)

▶ Provide multi-system data to machine learning

Difficulties of proof system interoperability

▶ Each system is based on different axioms and deduction rules

▶ It is usually non trivial and sometimes impossible to translate a
proof from one system to the other (e.g. a proof using
impredicativity or proof irrelevance in a system not allowing
these features)

Some one-to-one translation tools

▶ HOL90 to NuPRL [Howe 1996, statements only]

▶ HOL98 to Coq [Denney 2000]

▶ HOL98 to NuPRL [Naumov et al 2001]

Flyspeck project with HOL-Light, Coq and Isabelle/HOL [2003]

▶ HOL to Isabelle/HOL [Obua 2006]

▶ Isabelle/HOL to HOL-Light [McLaughlin 2006]

▶ HOL-Light to Coq [Wiedijk 2007, no implementation]

▶ HOL-Light to Coq [Keller & Werner 2010]

▶ HOL-Light to HOL4 [Kumar 2013]

▶ HOL-Light to Isabelle [Kaliszyk & Krauss 2013]

▶ HOL-Light to Metamath [Carneiro 2016]

▶ HOL4 to Isabelle/HOL [Immler et al 2019]

▶ Lean3 to Coq [Gilbert 2020]

▶ Lean3 to Lean4 [Lean community 2021]

▶ Maude to Lean [Rubio & Riesco 2022]

Interoperability between n systems
1

2

3
...
n

1

2

3
...
n

n(n − 1) translators

Can’t we be more generic ?

1

2

3
...
n

1

2

3
...
n

D 2n translators

Interoperability between n systems
1

2

3
...
n

1

2

3
...
n

n(n − 1) translators

Can’t we be more generic ?

1

2

3
...
n

1

2

3
...
n

D 2n translators

The λΠ/R approach: encoding features

use λΠ-calculus modulo rewriting (λΠ/R) as pivot language to
represent the proofs of various systems in a modular way:

– functional pure type systems (Cousineau & Dowek, 2007)

– higher-order logic (Assaf & Burel, 2012)

– universe cumulativity (Thiré, 2015)

– predicate subtyping with proof irrelevance (Hondet, 2020)

– η-equivalence and universe polymorphism (Genestier, 2020)

▶ Dedukti is a type-checker for λΠ/R
▶ Lambdapi is a Dedukti-compatible proof assistant with

additional features (implicit arguments/coercions, tactics, . . .)

What is the λΠ-calculus modulo rewriting (λΠ/R)?

λΠ/R = λ simply-typed λ-calculus
+ Π dependent types, e.g. Array n
+ R identification of types modulo rewrite rules l ↪→ r

a theory = a signature Σ + a set of rewrite rules R

typing = typing rules of Edinburg’s Logical Framework LF

+
Σ ⊢ t : A A ≡βR B

Σ ⊢ t : B

≡βR: equational theory
generated by β and R

example:
concat : Πp : N,Array p → Πq : N,Array q → Array(p + q)
concat 2 a 3 b : Array(2 + 3) ≡βR Array(5)

What is the λΠ-calculus modulo rewriting (λΠ/R)?

λΠ/R = λ simply-typed λ-calculus
+ Π dependent types, e.g. Array n
+ R identification of types modulo rewrite rules l ↪→ r

a theory = a signature Σ + a set of rewrite rules R

typing = typing rules of Edinburg’s Logical Framework LF

+
Σ ⊢ t : A A ≡βR B

Σ ⊢ t : B

≡βR: equational theory
generated by β and R

example:
concat : Πp : N,Array p → Πq : N,Array q → Array(p + q)
concat 2 a 3 b : Array(2 + 3) ≡βR Array(5)

The modular λΠ/R theory U and its sub-theories
(43 symbols, 31 rules)

Lambdapi files

https://github.com/Deducteam/lambdapi-logics/tree/master/U

Dedukti, an assembly language for proof systems

Dedukti

AtelierBTLAPS

ICSPA project

K

Isabelle

OpenTheory

HOL-Light

Matita

Agda Lean

Mizar

CubicalTT

Coq

FoCaLiZe

Zenon
ArchSAT TSTP

Alethe

SMT solvers
cvc5, veriT

Lambdapi PVS
automated
provers

Vampire, E, . . .

Lambdapi = Dedukti + implicit arguments/coercions, tactics, . . .

https://github.com/Deducteam/Dedukti

https://github.com/Deducteam/lambdapi

https://github.com/Deducteam/Dedukti
https://github.com/Deducteam/lambdapi

Previous works & tools on HOL to Coq

▶ Denney 2000: translates HOL98 proofs to Coq scripts using
some intermediate stack-based machine language

▶ Wiedijk 2007: describes a manual translation of HOL-Light
proofs in Coq terms via a shallow embedding (no implem)

▶ Keller & Werner 2010: translates HOL-Light proofs to Coq
terms via a deep embedding & computational reflection

▶ B. 2023: implements Wiedijk approach via a shallow
embedding in Lambdapi using results and ideas from:

– Assaf & Burel (translation of OpenTheory to Dedukti, 2015)
– Kaliszyk & Krauss (translation of HOL-Light to Isabelle, 2013)

Previous works & tools on HOL to Coq

▶ Denney 2000: translates HOL98 proofs to Coq scripts using
some intermediate stack-based machine language

▶ Wiedijk 2007: describes a manual translation of HOL-Light
proofs in Coq terms via a shallow embedding (no implem)

▶ Keller & Werner 2010: translates HOL-Light proofs to Coq
terms via a deep embedding & computational reflection

▶ B. 2023: implements Wiedijk approach via a shallow
embedding in Lambdapi using results and ideas from:

– Assaf & Burel (translation of OpenTheory to Dedukti, 2015)
– Kaliszyk & Krauss (translation of HOL-Light to Isabelle, 2013)

HOL-Light logic
Terms: simply typed λ-terms with prenex polymorphism (OCaml)
Rules:

⊢ t = t
REFL

Γ ⊢ s = t ∆ ⊢ t = u

Γ ∪∆ ⊢ s = u
TRANS

Γ ⊢ s = t ∆ ⊢ u = v

Γ ∪∆ ⊢ su = tv
MK COMB

Γ ⊢ s = t

Γ ⊢ λx , s = λx , t
ABS

⊢ (λx , t)x = t
BETA

{p} ⊢ p
ASSUME

Γ ⊢ p = q ∆ ⊢ p

Γ ∪∆ ⊢ q
EQ MP

Γ ⊢ p ∆ ⊢ q

(Γ− {q}) ∪ (∆− {p}) ⊢ p = q
DEDUCT ANTISYM RULE

Γ ⊢ p

Γθ ⊢ pθ
INST

Γ ⊢ p

ΓΘ ⊢ pΘ
INST TYPE

HOL-Light logic: connectives are defined from equality!
(Andrews Q0 logic)

⊤ =def (λp.p) = (λp.p)
∧ =def λp.λq.(λf .fpq) = (λf .f⊤⊤)
⇒ =def λp.λq.(p ∧ q) = p
∀ =def λp.p = (λx .⊤)
∃ =def λp.∀q.(∀x .px ⇒ q) ⇒ q
∨ =def λp.λq.∀r .(p ⇒ r) ⇒ (q ⇒ r) ⇒ r
⊥ =def ∀p.p
¬ =def λp.p ⇒ ⊥

Term and type definitions in HOL-Light

▶ One can give a name c to a term t of type A by adding:

– a typed constant c:A
– an axiom c = t

▶ One can give a name B to a type isomorphic to the set of terms
of type A satisfying some predicate p:A->bool by adding:

– a type constant B
– a proof of ∃a.p a

– a typed constant mk:A->B
– a typed constant dest:B->A
– an axiom ∀b:B.mk(dest b) = b

– an axiom ∀a:A.p a = (dest(mk a) = a)

A B{x :A|p(x)}

mk

dest

Term and type definitions in HOL-Light

▶ One can give a name c to a term t of type A by adding:

– a typed constant c:A
– an axiom c = t

▶ One can give a name B to a type isomorphic to the set of terms
of type A satisfying some predicate p:A->bool by adding:

– a type constant B
– a proof of ∃a.p a

– a typed constant mk:A->B
– a typed constant dest:B->A
– an axiom ∀b:B.mk(dest b) = b

– an axiom ∀a:A.p a = (dest(mk a) = a)

A B{x :A|p(x)}

mk

dest

Step 1: extract proofs out of HOL-Light
HOL-Light uses the LCF approach:

it records provability and not proofs

we need to patch it to export proofs (Obua 2005, Polu 2019):

type thm = Sequent of (term list * term

* int

)

val REFL : term -> thm

val TRANS : thm -> thm -> thm

val MK_COMB : thm * thm -> thm

val ABS : term -> thm -> thm

val BETA : term -> thm

val ASSUME : term -> thm

val EQ_MP : thm -> thm -> thm

val DEDUCT_ANTISYM_RULE : thm -> thm -> thm

val INST_TYPE : (hol_type * hol_type) list -> thm -> thm

val INST : (term * term) list -> thm -> thm

type proof = Proof of (thm * proof content)

and proof content =
— Prefl of term
— Ptrans of int * int

— ...

Step 1: extract proofs out of HOL-Light
HOL-Light uses the LCF approach:

it records provability and not proofs

we need to patch it to export proofs (Obua 2005, Polu 2019):

type thm = Sequent of (term list * term * int)

(* theorem identifier *)

val REFL : term -> thm

val TRANS : thm -> thm -> thm

val MK_COMB : thm * thm -> thm

val ABS : term -> thm -> thm

val BETA : term -> thm

val ASSUME : term -> thm

val EQ_MP : thm -> thm -> thm

val DEDUCT_ANTISYM_RULE : thm -> thm -> thm

val INST_TYPE : (hol_type * hol_type) list -> thm -> thm

val INST : (term * term) list -> thm -> thm

type proof = Proof of (thm * proof content)

and proof content =

| Prefl of term

| Ptrans of int * int

| ...

Step 2: simplify HOL-Light proofs

the number of generated proof steps can be reduced by:

▶ instrumenting connectives intro/elim rules and α-equivalence

▶ rewriting proofs:
SYM(REFL(t)) ↪→ REFL(t)
SYM(SYM(p)) ↪→ p

TRANS(REFL(t),p) ↪→ p
TRANS(p,REFL(t)) ↪→ p

CONJUNCT1(CONJ(p,)) ↪→ p
CONJUNCT2(CONJ(,p)) ↪→ p

MKCOMB(REFL(t),REFL(u)) ↪→ REFL(t(u))
EQMP(REFL(),p) ↪→ p

▶ removing useless proof steps (because of tactic failures)

initial number of
steps for hol .ml

with basic tactics
instrumentation

and simplification
and purge

14.3 M 8.6 M (-40%) 3.5 M (-76%)

Step 2: simplify HOL-Light proofs

the number of generated proof steps can be reduced by:

▶ instrumenting connectives intro/elim rules and α-equivalence

▶ rewriting proofs:
SYM(REFL(t)) ↪→ REFL(t)
SYM(SYM(p)) ↪→ p

TRANS(REFL(t),p) ↪→ p
TRANS(p,REFL(t)) ↪→ p

CONJUNCT1(CONJ(p,)) ↪→ p
CONJUNCT2(CONJ(,p)) ↪→ p

MKCOMB(REFL(t),REFL(u)) ↪→ REFL(t(u))
EQMP(REFL(),p) ↪→ p

▶ removing useless proof steps (because of tactic failures)

initial number of
steps for hol .ml

with basic tactics
instrumentation

and simplification
and purge

14.3 M 8.6 M (-40%) 3.5 M (-76%)

Step 2: simplify HOL-Light proofs

the number of generated proof steps can be reduced by:

▶ instrumenting connectives intro/elim rules and α-equivalence

▶ rewriting proofs:
SYM(REFL(t)) ↪→ REFL(t)
SYM(SYM(p)) ↪→ p

TRANS(REFL(t),p) ↪→ p
TRANS(p,REFL(t)) ↪→ p

CONJUNCT1(CONJ(p,)) ↪→ p
CONJUNCT2(CONJ(,p)) ↪→ p

MKCOMB(REFL(t),REFL(u)) ↪→ REFL(t(u))
EQMP(REFL(),p) ↪→ p

▶ removing useless proof steps (because of tactic failures)

initial number of
steps for hol .ml

with basic tactics
instrumentation

and simplification
and purge

14.3 M 8.6 M (-40%) 3.5 M (-76%)

Step 2: simplify HOL-Light proofs

the number of generated proof steps can be reduced by:

▶ instrumenting connectives intro/elim rules and α-equivalence

▶ rewriting proofs:
SYM(REFL(t)) ↪→ REFL(t)
SYM(SYM(p)) ↪→ p

TRANS(REFL(t),p) ↪→ p
TRANS(p,REFL(t)) ↪→ p

CONJUNCT1(CONJ(p,)) ↪→ p
CONJUNCT2(CONJ(,p)) ↪→ p

MKCOMB(REFL(t),REFL(u)) ↪→ REFL(t(u))
EQMP(REFL(),p) ↪→ p

▶ removing useless proof steps (because of tactic failures)

initial number of
steps for hol .ml

with basic tactics
instrumentation

and simplification
and purge

14.3 M 8.6 M (-40%) 3.5 M (-76%)

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* Encoding of HOL -Light types as terms of type Set */

constant symbol Set : TYPE;

constant symbol bool : Set;

constant symbol fun : Set → Set → Set;

/* Interpretation of HOL -Light types as Lambdapi types */

injective symbol El : Set → TYPE;

rule El(fun $a $b) ↪→ El $a → El $b;

/* HOL -Light primitive constants */

constant symbol = [A] : El(fun A (fun A bool));

symbol ε [A] : El (fun (fun A bool) A);

/* Interpretation of HOL -Light propositions as Lambdapi types

(Curry -Howard correspondence to be defined) */

injective symbol Prf : El bool → TYPE;

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* Encoding of HOL -Light types as terms of type Set */

constant symbol Set : TYPE;

constant symbol bool : Set;

constant symbol fun : Set → Set → Set;

/* Interpretation of HOL -Light types as Lambdapi types */

injective symbol El : Set → TYPE;

rule El(fun $a $b) ↪→ El $a → El $b;

/* HOL -Light primitive constants */

constant symbol = [A] : El(fun A (fun A bool));

symbol ε [A] : El (fun (fun A bool) A);

/* Interpretation of HOL -Light propositions as Lambdapi types

(Curry -Howard correspondence to be defined) */

injective symbol Prf : El bool → TYPE;

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* Encoding of HOL -Light types as terms of type Set */

constant symbol Set : TYPE;

constant symbol bool : Set;

constant symbol fun : Set → Set → Set;

/* Interpretation of HOL -Light types as Lambdapi types */

injective symbol El : Set → TYPE;

rule El(fun $a $b) ↪→ El $a → El $b;

/* HOL -Light primitive constants */

constant symbol = [A] : El(fun A (fun A bool));

symbol ε [A] : El (fun (fun A bool) A);

/* Interpretation of HOL -Light propositions as Lambdapi types

(Curry -Howard correspondence to be defined) */

injective symbol Prf : El bool → TYPE;

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* Encoding of HOL -Light types as terms of type Set */

constant symbol Set : TYPE;

constant symbol bool : Set;

constant symbol fun : Set → Set → Set;

/* Interpretation of HOL -Light types as Lambdapi types */

injective symbol El : Set → TYPE;

rule El(fun $a $b) ↪→ El $a → El $b;

/* HOL -Light primitive constants */

constant symbol = [A] : El(fun A (fun A bool));

symbol ε [A] : El (fun (fun A bool) A);

/* Interpretation of HOL -Light propositions as Lambdapi types

(Curry -Howard correspondence to be defined) */

injective symbol Prf : El bool → TYPE;

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* HOL -Light axioms and rules */

symbol REFL [a] (t : El a) : Prf(= t t);

symbol MK_COMB [a b] [s t : El(fun a b)] [u v : El a] :

Prf(= s t) → Prf(= u v) → Prf(= (s u) (t v));

symbol EQ_MP [p q] : Prf(= p q) → Prf p → Prf q;

symbol fun_ext [a b] [f g : El (fun a b)] :

(Π x, Prf (= (f x) (g x))) → Prf (= f g);

symbol prop_ext [p q] :

(Prf p → Prf q) → (Prf q → Prf p) → Prf (= p q);

/* HOL -Light derived connectives */

constant symbol ⇒ : El (fun bool (fun bool bool));

rule Prf(⇒ $p $q) ↪→ Prf $p → Prf $q;

constant symbol ∀ [A] : El (fun (fun A bool) bool);

rule Prf(∀ $p) ↪→ Π x,Prf($p x);

...

/* Natural deduction rules */

symbol ∧i [p] : Prf p → Π[q],Prf q → Prf(∧ p q);

symbol ∧e1 [p q] : Prf(∧ p q) → Prf p;

symbol ∧e2 [p q] : Prf(∧ p q) → Prf q;

symbol ∃i [a] (p : El a → El bool) t : Prf(p t) → Prf(∃ p);

symbol ∃e [a] [p : El a → El bool] :

Prf(∃(λ x,p x)) → Π[r],(Π x:El a,Prf(p x) → Prf r) → Prf r;

...

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* HOL -Light axioms and rules */

symbol REFL [a] (t : El a) : Prf(= t t);

symbol MK_COMB [a b] [s t : El(fun a b)] [u v : El a] :

Prf(= s t) → Prf(= u v) → Prf(= (s u) (t v));

symbol EQ_MP [p q] : Prf(= p q) → Prf p → Prf q;

symbol fun_ext [a b] [f g : El (fun a b)] :

(Π x, Prf (= (f x) (g x))) → Prf (= f g);

symbol prop_ext [p q] :

(Prf p → Prf q) → (Prf q → Prf p) → Prf (= p q);

/* HOL -Light derived connectives */

constant symbol ⇒ : El (fun bool (fun bool bool));

rule Prf(⇒ $p $q) ↪→ Prf $p → Prf $q;

constant symbol ∀ [A] : El (fun (fun A bool) bool);

rule Prf(∀ $p) ↪→ Π x,Prf($p x);

...

/* Natural deduction rules */

symbol ∧i [p] : Prf p → Π[q],Prf q → Prf(∧ p q);

symbol ∧e1 [p q] : Prf(∧ p q) → Prf p;

symbol ∧e2 [p q] : Prf(∧ p q) → Prf q;

symbol ∃i [a] (p : El a → El bool) t : Prf(p t) → Prf(∃ p);

symbol ∃e [a] [p : El a → El bool] :

Prf(∃(λ x,p x)) → Π[r],(Π x:El a,Prf(p x) → Prf r) → Prf r;

...

Step 3: represent HOL-Light terms and proofs
in Lambdapi (Assaf & Burel, 2015)

/* HOL -Light axioms and rules */

symbol REFL [a] (t : El a) : Prf(= t t);

symbol MK_COMB [a b] [s t : El(fun a b)] [u v : El a] :

Prf(= s t) → Prf(= u v) → Prf(= (s u) (t v));

symbol EQ_MP [p q] : Prf(= p q) → Prf p → Prf q;

symbol fun_ext [a b] [f g : El (fun a b)] :

(Π x, Prf (= (f x) (g x))) → Prf (= f g);

symbol prop_ext [p q] :

(Prf p → Prf q) → (Prf q → Prf p) → Prf (= p q);

/* HOL -Light derived connectives */

constant symbol ⇒ : El (fun bool (fun bool bool));

rule Prf(⇒ $p $q) ↪→ Prf $p → Prf $q;

constant symbol ∀ [A] : El (fun (fun A bool) bool);

rule Prf(∀ $p) ↪→ Π x,Prf($p x);

...

/* Natural deduction rules */

symbol ∧i [p] : Prf p → Π[q],Prf q → Prf(∧ p q);

symbol ∧e1 [p q] : Prf(∧ p q) → Prf p;

symbol ∧e2 [p q] : Prf(∧ p q) → Prf q;

symbol ∃i [a] (p : El a → El bool) t : Prf(p t) → Prf(∃ p);

symbol ∃e [a] [p : El a → El bool] :

Prf(∃(λ x,p x)) → Π[r],(Π x:El a,Prf(p x) → Prf r) → Prf r;

...

Step 4: from Lambdapi to Coq

the translation is purely syntactic:

▶ the symbols El and Prf are removed

▶ some symbols are replaced by Coq expr. wrt a user-defined map:

HOL-Light Lambdapi Coq
hol type Set {type:>Type; el :type}

fun arr =>
bool bool Prop
= = eq

Prefl REFL eq refl
==> ⇒ =>
/\ ∧ and
num num nat
+ + add
<= <= le
.

example output:

Lemma thm_DIV_MOD : forall m : nat , forall n : nat ,

forall p : nat , (MOD (DIV m n) p) = (DIV (MOD m (mul n p)) n).

Step 5: alignment of definitions
▶ One can give a name c to a term t of type A by adding:

– a typed constant c:A
– an axiom c = t

to replace c by the Coq expression c’, we need to do in Coq:
– prove c’ = t

▶ One can give a name B to a type isomorphic to the set of terms
of type A satisfying some predicate p:A->bool by adding:
– a type constant B
– a proof of ∃a.p a

– a typed constant mk:A->B
– a typed constant dest:B->A
– an axiom ∀b:B.mk(dest b) = b

– an axiom ∀a:A.p a = (dest(mk a) = a)

to replace B by the Coq expression B’, we need to do in Coq:
– define mk:A->B’

– define dest:B’->A

– prove ∀b:B’, mk(dest b) = b

– prove ∀a:A, p a = (dest(mk a) = a)

Step 5: alignment of definitions
▶ One can give a name c to a term t of type A by adding:

– a typed constant c:A
– an axiom c = t

to replace c by the Coq expression c’, we need to do in Coq:
– prove c’ = t

▶ One can give a name B to a type isomorphic to the set of terms
of type A satisfying some predicate p:A->bool by adding:
– a type constant B
– a proof of ∃a.p a

– a typed constant mk:A->B
– a typed constant dest:B->A
– an axiom ∀b:B.mk(dest b) = b

– an axiom ∀a:A.p a = (dest(mk a) = a)

to replace B by the Coq expression B’, we need to do in Coq:
– define mk:A->B’

– define dest:B’->A

– prove ∀b:B’, mk(dest b) = b

– prove ∀a:A, p a = (dest(mk a) = a)

Step 5: alignment of definitions
▶ One can give a name c to a term t of type A by adding:

– a typed constant c:A
– an axiom c = t

to replace c by the Coq expression c’, we need to do in Coq:
– prove c’ = t

▶ One can give a name B to a type isomorphic to the set of terms
of type A satisfying some predicate p:A->bool by adding:
– a type constant B
– a proof of ∃a.p a

– a typed constant mk:A->B
– a typed constant dest:B->A
– an axiom ∀b:B.mk(dest b) = b

– an axiom ∀a:A.p a = (dest(mk a) = a)

to replace B by the Coq expression B’, we need to do in Coq:
– define mk:A->B’

– define dest:B’->A

– prove ∀b:B’, mk(dest b) = b

– prove ∀a:A, p a = (dest(mk a) = a)

Alignments already proved

▶ connectives

▶ unit type

▶ product type constructor

▶ type of natural numbers, addition, substraction, multiplication,
division, power, ordering, min, max, mod, even, odd, . . .

▶ option type constructor

▶ sum type constructor

▶ list type constructor, head, tail, concatenation, reverse, length,
map, forall, membership, . . . (thanks to Anthony Bordg)

and we are currently working on the type of real numbers

HOL-Light library in Coq

available on Opam:

https://github.com/deducteam/coq-hol-light/

currently contains 667 lemmas on logic, arithmetic and lists mainly

usage in Coq:

Require Import HOLLight.hol light.

https://github.com/deducteam/coq-hol-light/

Axioms required in Coq

Axiom classic (P : Prop) : P \/ ~ P.

Axiom constructive_indefinite_description (A : Type) P :

(exists x, P x) -> {x : A | P x}.

Axiom fun_ext {A B: Type} {f g: A -> B}:

(forall x, f x = g x) -> f = g.

Axiom prop_ext {P Q : Prop} : (P -> Q) -> (Q -> P) -> P = Q.

Axiom proof_irrelevance (P:Prop) (p1 p2 : P) : p1 = p2.

Performances

The translations (HOL-Light to Lambdapi, and Lambdapi to Coq)
and the verification by Coq can be done in parallel by generating
a Lambdapi/Coq file for each HOL-Light user-defined theorem

To scale up, we also need to share types and terms

On a machine with 32 processors i9-13950HX and 64Go RAM:

HOL-Light file dump-simp dump size proof steps nb theorems

hol .ml 3m57s 3 Go 5 M 5679
topology.ml 48m 52 Go 52 M 18866

HOL-Light file make -j32 lp make -j32 v v files size make -j32 vo

hol .ml 51s 55s 1 Go 18m4s
topology.ml 22m22s 20m16s 68 Go 8h

Tools: hol2dk and lambdapi

▶ https://github.com/Deducteam/hol2dk

– provides a small patch for HOL-Light to export proofs

improves ProofTrace [Polu 2019] by reducing memory

consumption and adding on-the-fly writing on disk

– translates HOL-Light proofs to Dedukti and Lambdapi

▶ https://github.com/Deducteam/lambdapi

– allows to converts dk/lp files using some encodings of HOL
into Coq files

https://github.com/Deducteam/hol2dk
https://github.com/Deducteam/lambdapi

