Translating HOL-Light proofs to Coq

Frédéric Blanqui

Libraries of formal proofs today

Library	Nb files	Nb objects*
Coq Opam	35,000	1,200,000
Isabelle AFP	7,500	280,000
Lean Mathlib	4,200	210,000
Mizar Mathlib	1,400	77,000
HOL-Light	635	37,000

* type, definition, theorem,

Libraries of formal proofs today

- Every system has its own basic libraries on integers, lists, reals, ...
- Some definitions/theorems are available in one system only and took several man-years to be formalized

Interest of proof system interoperability

- Avoid duplicating developments and losing time
- Facilitate development of new proofs and new systems
- Increase reliability of formal proofs (cross-checking)
- Facilitate validation by certification authorities
- Relativize the choice of a system (school, industry)
- Provide multi-system data to machine learning

Difficulties of proof system interoperability

- Each system is based on different axioms and deduction rules
- It is usually non trivial and sometimes impossible to translate a proof from one system to the other (e.g. a proof using impredicativity or proof irrelevance in a system not allowing these features)

Some one-to-one translation tools

- HOL90 to NuPRL [Howe 1996, statements only]
- HOL98 to Coq [Denney 2000]
- HOL98 to NuPRL [Naumov et al 2001]

Flyspeck project with HOL-Light, Coq and Isabelle/HOL [2003]

- ► HOL to Isabelle/HOL [Obua 2006]
- Isabelle/HOL to HOL-Light [McLaughlin 2006]
- HOL-Light to Coq [Wiedijk 2007, no implementation]
- ▶ HOL-Light to Coq [Keller & Werner 2010]
- HOL-Light to HOL4 [Kumar 2013]
- HOL-Light to Isabelle [Kaliszyk & Krauss 2013]
- HOL-Light to Metamath [Carneiro 2016]
- HOL4 to Isabelle/HOL [Immler et al 2019]
- Lean3 to Coq [Gilbert 2020]
- Lean3 to Lean4 [Lean community 2021]
- Maude to Lean [Rubio & Riesco 2022]

Interoperability between *n* systems

n(n-1) translators

Interoperability between *n* systems

n(n-1) translators

Can't we be more generic ?

2n translators

The $\lambda \Pi / \mathcal{R}$ approach: encoding features

use $\lambda \Pi$ -calculus modulo rewriting $(\lambda \Pi / \mathcal{R})$ as pivot language to represent the proofs of various systems in a modular way:

- functional pure type systems (Cousineau & Dowek, 2007)
- higher-order logic (Assaf & Burel, 2012)
- universe cumulativity (Thiré, 2015)
- predicate subtyping with proof irrelevance (Hondet, 2020)
- η -equivalence and universe polymorphism (Genestier, 2020)
- **Dedukti** is a type-checker for $\lambda \Pi / \mathcal{R}$
- Lambdapi is a Dedukti-compatible proof assistant with additional features (implicit arguments/coercions, tactics, ...)

What is the $\lambda \Pi$ -calculus modulo rewriting $(\lambda \Pi / \mathcal{R})$?

 $\begin{array}{ccc} \lambda \Pi / \mathcal{R} = \lambda & \text{simply-typed } \lambda \text{-calculus} \\ + \Pi & \text{dependent types, e.g. Array } n \\ + \mathcal{R} & \text{identification of types modulo rewrite rules } I \hookrightarrow r \end{array}$

a theory = a signature Σ + a set of rewrite rules \mathcal{R}

What is the $\lambda \Pi$ -calculus modulo rewriting $(\lambda \Pi / \mathcal{R})$?

$$\begin{array}{ll} \lambda \Pi / \mathcal{R} = \lambda & \text{simply-typed } \lambda \text{-calculus} \\ + \Pi & \text{dependent types, e.g. Array } n \\ + \mathcal{R} & \text{identification of types modulo rewrite rules } I \hookrightarrow r \end{array}$$

a theory = a signature Σ + a set of rewrite rules ${\cal R}$

typing = typing rules of Edinburg's Logical Framework LF

+
$$\frac{\Sigma \vdash t : A \quad A \equiv_{\beta \mathcal{R}} B}{\Sigma \vdash t : B} \qquad \equiv_{\beta \mathcal{R}} : \text{ equational theory} \\ \text{generated by } \beta \text{ and } \mathcal{R}$$

example:

concat : Πp : \mathbb{N} , Array $p \to \Pi q$: \mathbb{N} , Array $q \to \text{Array}(p+q)$ concat 2 a 3 b : Array(2 + 3) $\equiv_{\beta \mathcal{R}} \text{Array}(5)$

The modular $\lambda \Pi / \mathcal{R}$ theory U and its sub-theories (43 symbols, 31 rules)

Lambdapi files

Dedukti, an assembly language for proof systems

Lambdapi = Dedukti + implicit arguments/coercions, tactics, ...

https://github.com/Deducteam/Dedukti https://github.com/Deducteam/lambdapi

Previous works & tools on HOL to Coq

- Denney 2000: translates HOL98 proofs to Coq scripts using some intermediate stack-based machine language
- Wiedijk 2007: describes a manual translation of HOL-Light proofs in Coq terms via a shallow embedding (no implem)
- Keller & Werner 2010: translates HOL-Light proofs to Coq terms via a deep embedding & computational reflection

Previous works & tools on HOL to Coq

- Denney 2000: translates HOL98 proofs to Coq scripts using some intermediate stack-based machine language
- Wiedijk 2007: describes a manual translation of HOL-Light proofs in Coq terms via a shallow embedding (no implem)
- Keller & Werner 2010: translates HOL-Light proofs to Coq terms via a deep embedding & computational reflection
- B. 2023: implements Wiedijk approach via a shallow embedding in Lambdapi using results and ideas from:
 - Assaf & Burel (translation of OpenTheory to Dedukti, 2015)
 - Kaliszyk & Krauss (translation of HOL-Light to Isabelle, 2013)

HOL-Light logic

Terms: simply typed λ -terms with prenex polymorphism (OCaml) **Rules:**

$$\frac{\Gamma \vdash s = t \quad \Delta \vdash t = u}{\Gamma \cup \Delta \vdash s = u} \text{ TRANS}$$

$$\frac{\Gamma \vdash s = t \quad \Delta \vdash u = v}{\Gamma \cup \Delta \vdash su = tv} \text{ MK_COMB} \qquad \frac{\Gamma \vdash s = t}{\Gamma \vdash \lambda x, s = \lambda x, t} \text{ ABS}$$

$$\frac{\Gamma \vdash p = q \quad \Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{ BETA} \qquad \frac{\{p\} \vdash p}{\Gamma \cup \Delta \vdash q} \text{ ASSUME}$$

$$\frac{\Gamma \vdash p = q \quad \Delta \vdash p}{\Gamma \cup \Delta \vdash q} \text{ EQ_MP}$$

$$\frac{\Gamma \vdash p \quad \Delta \vdash q}{(\Gamma - \{q\}) \cup (\Delta - \{p\}) \vdash p = q} \text{ DEDUCT_ANTISYM_RULE}$$

$$\frac{\Gamma \vdash p}{\Gamma \Theta \vdash p \Theta} \text{ INST} \qquad \frac{\Gamma \vdash p}{\Gamma \Theta \vdash p \Theta} \text{ INST_TYPE}$$

HOL-Light logic: connectives are defined from equality! (Andrews Q0 logic)

$$T =_{def} (\lambda p.p) = (\lambda p.p)$$

$$\land =_{def} \lambda p.\lambda q.(\lambda f.fpq) = (\lambda f.f \top \top)$$

$$\Rightarrow =_{def} \lambda p.\lambda q.(p \land q) = p$$

$$\forall =_{def} \lambda p.p = (\lambda x.\top)$$

$$\exists =_{def} \lambda p.\forall q.(\forall x.px \Rightarrow q) \Rightarrow q$$

$$\lor =_{def} \lambda p.\lambda q.\forall r.(p \Rightarrow r) \Rightarrow (q \Rightarrow r) \Rightarrow r$$

$$\bot =_{def} \forall p.p$$

$$\neg =_{def} \lambda p.p \Rightarrow \bot$$

Term and type definitions in HOL-Light

- One can give a name c to a term t of type A by adding:
 - a typed constant c:A
 - an axiom c = t

Term and type definitions in HOL-Light

- One can give a name c to a term t of type A by adding:
 - a typed constant c:A
 - an axiom c = t
- One can give a name B to a type isomorphic to the set of terms of type A satisfying some predicate p:A->bool by adding:
 - a type constant B
 - a proof of ∃a.p a
 - a typed constant mk:A->B
 - a typed constant dest:B->A
 - an axiom $\forall b:B.mk(dest b) = b$
 - an axiom $\forall a: A.p a = (dest(mk a) = a)$

Step 1: extract proofs out of HOL-Light HOL-Light uses the **LCF** approach:

it records provability and not proofs

)

type thm = Sequent of (term list * term

val REFL : term -> thm val TRANS : thm -> thm -> thm val MK_COMB : thm * thm -> thm val ABS : term -> thm -> thm val BETA : term -> thm val ASSUME : term -> thm val ASSUME : term -> thm val EQ_MP : thm -> thm -> thm val DEDUCT_ANTISYM_RULE : thm -> thm -> thm val INST_TYPE : (hol_type * hol_type) list -> thm -> thm val INST : (term * term) list -> thm -> thm

Step 1: extract proofs out of HOL-Light HOL-Light uses the **LCF** approach:

it records provability and not proofs

we need to patch it to export proofs (Obua 2005, Polu 2019):

```
type proof = Proof of (thm * proof_content)
and proof_content =
| Prefl of term
| Ptrans of int * int
| ...
```

the number of generated proof steps can be reduced by:

instrumenting connectives intro/elim rules and α -equivalence

the number of generated proof steps can be reduced by:

- **instrumenting** connectives intro/elim rules and α -equivalence
- **rewriting** proofs:

$$\begin{array}{rcccc} \mathsf{SYM}(\mathsf{REFL}(t)) & \hookrightarrow & \mathsf{REFL}(t)\\ & \mathsf{SYM}(\mathsf{SYM}(p)) & \hookrightarrow & \mathsf{p}\\ & & & \\ \mathsf{TRANS}(\mathsf{REFL}(t),\mathsf{p}) & \hookrightarrow & \mathsf{p}\\ & & & \\ \mathsf{TRANS}(\mathsf{p},\mathsf{REFL}(t)) & \hookrightarrow & \mathsf{p}\\ & & \\ \mathsf{CONJUNCT1}(\mathsf{CONJ}(\mathsf{p}, _)) & \hookrightarrow & \mathsf{p}\\ & & \\ \mathsf{CONJUNCT2}(\mathsf{CONJ}(_,\mathsf{p})) & \hookrightarrow & \mathsf{p}\\ & & \\ \mathsf{MKCOMB}(\mathsf{REFL}(t),\mathsf{REFL}(u)) & \hookrightarrow & \mathsf{REFL}(\mathsf{t}(u))\\ & & & \\ \mathsf{EQMP}(\mathsf{REFL}(_),\mathsf{p}) & \hookrightarrow & \mathsf{p} \end{array}$$

the number of generated proof steps can be reduced by:

- instrumenting connectives intro/elim rules and α -equivalence
- rewriting proofs:

$$\begin{array}{rcl} SYM(REFL(t))&\hookrightarrow&REFL(t)\\ SYM(SYM(p))&\hookrightarrow&p\\ TRANS(REFL(t),p)&\hookrightarrow&p\\ TRANS(p,REFL(t))&\hookrightarrow&p\\ CONJUNCT1(CONJ(p,_-))&\hookrightarrow&p\\ CONJUNCT2(CONJ(_,p))&\hookrightarrow&p\\ MKCOMB(REFL(t),REFL(u))&\hookrightarrow&REFL(t(u))\\ EQMP(REFL(_),p)&\hookrightarrow&p\end{array}$$

removing useless proof steps (because of tactic failures)

the number of generated proof steps can be reduced by:

- instrumenting connectives intro/elim rules and α -equivalence
- rewriting proofs:

removing useless proof steps (because of tactic failures)

initial number of steps for hol.ml	with basic tactics instrumentation	and simplification and purge
14.3 M	8.6 M (-40%)	3.5 M (-76%)

/* Encoding of HOL-Light types as terms of type Set */ constant symbol Set : TYPE; constant symbol bool : Set; constant symbol fun : Set \rightarrow Set \rightarrow Set;

```
/* Encoding of HOL-Light types as terms of type Set */
constant symbol Set : TYPE;
constant symbol bool : Set;
constant symbol fun : Set \rightarrow Set;
```

/* Interpretation of HOL-Light types as Lambdapi types */ injective symbol El : Set \rightarrow TYPE; rule El(fun \$a \$b) \hookrightarrow El \$a \rightarrow El \$b;

```
/* Encoding of HOL-Light types as terms of type Set */
constant symbol Set : TYPE;
constant symbol bool : Set;
constant symbol fun : Set \rightarrow Set;
```

```
/* Interpretation of HOL-Light types as Lambdapi types */
injective symbol El : Set \rightarrow TYPE;
rule El(fun $a $b) \hookrightarrow El $a \rightarrow El $b;
```

```
/* HOL-Light primitive constants */
constant symbol = [A] : El(fun A (fun A bool));
symbol ɛ [A] : El (fun (fun A bool) A);
```

```
/* Encoding of HOL-Light types as terms of type Set */
constant symbol Set : TYPE;
constant symbol bool : Set;
constant symbol fun : Set \rightarrow Set;
```

```
/* Interpretation of HOL-Light types as Lambdapi types */
injective symbol El : Set \rightarrow TYPE;
rule El(fun $a $b) \hookrightarrow El $a \rightarrow El $b;
```

```
/* HOL-Light primitive constants */
constant symbol = [A] : El(fun A (fun A bool));
symbol ɛ [A] : El (fun (fun A bool) A);
```

```
/* Interpretation of HOL-Light propositions as Lambdapi types
 (Curry-Howard correspondence to be defined) */
injective symbol Prf : El bool → TYPE;
```

```
/* HOL-Light axioms and rules */

symbol REFL [a] (t : El a) : Prf(= t t);

symbol MK_COMB [a b] [s t : El(fun a b)] [u v : El a] :

Prf(= s t) \rightarrow Prf(= u v) \rightarrow Prf(= (s u) (t v));

symbol EQ_MP [p q] : Prf(= p q) \rightarrow Prf p \rightarrow Prf q;

symbol fun_ext [a b] [f g : El (fun a b)] :

(\Pi x, Prf (= (f x) (g x))) \rightarrow Prf (= f g);

symbol prop_ext [p q] :

(Prf p \rightarrow Prf q) \rightarrow (Prf q \rightarrow Prf p) \rightarrow Prf (= p q);
```

```
/* HOL-Light axioms and rules */
symbol REFL [a] (t : El a) : Prf(= t t);
symbol MK_COMB [a b] [s t : El(fun a b)] [u v : El a] :
Prf(= s t) → Prf(= u v) → Prf(= (s u) (t v));
symbol EQ_MP [p q] : Prf(= p q) → Prf p → Prf q;
symbol fun_ext [a b] [f g : El (fun a b)] :
(Π x, Prf (= (f x) (g x))) → Prf (= f g);
symbol prop_ext [p q] :
(Prf p → Prf q) → (Prf q → Prf p) → Prf (= p q);
```

```
/* HOL-Light derived connectives */
constant symbol \Rightarrow : El (fun bool (fun bool bool));
rule Prf(\Rightarrow $p $q) \hookrightarrow Prf $p \rightarrow Prf $q;
constant symbol \forall [A] : El (fun (fun A bool) bool);
rule Prf(\forall $p) \hookrightarrow \Pi x, Prf($p x);
...
```

```
/* HOL-Light axioms and rules */

symbol REFL [a] (t : El a) : Prf(= t t);

symbol MK_COMB [a b] [s t : El(fun a b)] [u v : El a] :

Prf(= s t) \rightarrow Prf(= u v) \rightarrow Prf(= (s u) (t v));

symbol EQ_MP [p q] : Prf(= p q) \rightarrow Prf p \rightarrow Prf q;

symbol fun_ext [a b] [f g : El (fun a b)] :

(\Pi x, Prf (= (f x) (g x))) \rightarrow Prf (= f g);

symbol prop_ext [p q] :

(Prf p \rightarrow Prf q) \rightarrow (Prf q \rightarrow Prf p) \rightarrow Prf (= p q);
```

```
/* HOL-Light derived connectives */
constant symbol \Rightarrow : El (fun bool (fun bool bool));
rule Prf(\Rightarrow $p $q) \hookrightarrow Prf $p \rightarrow Prf $q;
constant symbol \forall [A] : El (fun (fun A bool) bool);
rule Prf(\forall $p) \hookrightarrow \Pi x, Prf($p x);
...
```

```
/* Natural deduction rules */

symbol \landi [p] : Prf p \rightarrow \Pi[q], Prf q \rightarrow Prf(\land p q);

symbol \lande1 [p q] : Prf(\land p q) \rightarrow Prf p;

symbol \lande2 [p q] : Prf(\land p q) \rightarrow Prf q;

symbol \existsi [a] (p : El a \rightarrow El bool) t : Prf(p t) \rightarrow Prf(\exists p);

symbol \existse [a] [p : El a \rightarrow El bool] :

Prf(\exists(\lambda x, p x)) \rightarrow \Pi[r], (\Pi x:El a, Prf(p x) \rightarrow Prf r) \rightarrow Prf r;
```

Step 4: from Lambdapi to Coq

the translation is purely syntactic:

- the symbols El and Prf are removed
- some symbols are replaced by Coq expr. wrt a user-defined map:

HOL-Light	OL-Light Lambdapi Coq		
hol_type	Set	{type:>Type; el:type}	
fun	arr	->	
bool	bool	Prop	
=	=	eq	
Prefl	REFL	eq_refl	
==>	\Rightarrow	->	
	∧	and	
num	num	nat	
+	+	add	
<=	<=	le	

example output:

```
Lemma thm_DIV_MOD : forall m : nat, forall n : nat, forall p : nat, (MOD (DIV m n) p) = (DIV (MOD m (mul n p)) n).
```

Step 5: alignment of definitions

- One can give a name c to a term t of type A by adding:
 - a typed constant c:A
 - an axiom c = t

Step 5: alignment of definitions

- One can give a name c to a term t of type A by adding:
 - a typed constant c:A
 - an axiom c = t

to replace c by the Coq expression c', we need to do in Coq:

Step 5: alignment of definitions

- One can give a name c to a term t of type A by adding:
 - a typed constant c:A
 - an axiom c = t

to replace c by the Coq expression c', we need to do in Coq: - prove c' = t

- One can give a name B to a type isomorphic to the set of terms of type A satisfying some predicate p:A->bool by adding:
 - a type constant B
 - a proof of ∃a.p a
 - a typed constant mk:A->B
 - a typed constant dest:B->A
 - an axiom $\forall b:B.mk(dest b) = b$
 - an axiom $\forall a: A.p a = (dest(mk a) = a)$

to replace B by the Coq expression B', we need to do in Coq:

- define mk:A->B'

- prove
$$\forall b:B'$$
, mk(dest b) = b

- prove $\forall a:A, p a = (dest(mk a) = a)$

Alignments already proved

connectives

- unit type
- product type constructor
- type of natural numbers, addition, substraction, multiplication, division, power, ordering, min, max, mod, even, odd, ...
- option type constructor
- sum type constructor
- list type constructor, head, tail, concatenation, reverse, length, map, forall, membership, ... (thanks to Anthony Bordg)

and we are currently working on the type of real numbers

HOL-Light library in Coq

available on Opam:

https://github.com/deducteam/coq-hol-light/

currently contains 667 lemmas on logic, arithmetic and lists mainly

usage in Coq:

Require Import HOLLight.hol_light.

Axioms required in Coq

```
Axiom classic (P : Prop) : P \/ ~ P.
Axiom constructive_indefinite_description (A : Type) P :
```

```
(exists x, P x) \rightarrow {x : A | P x}.
```

```
Axiom fun_ext {A B: Type} {f g: A \rightarrow B}:
(forall x, f x = g x) \rightarrow f = g.
```

```
Axiom prop_ext {P Q : Prop} : (P \rightarrow Q) \rightarrow (Q \rightarrow P) \rightarrow P = Q.
Axiom proof_irrelevance (P:Prop) (p1 p2 : P) : p1 = p2.
```

Performances

The translations (HOL-Light to Lambdapi, and Lambdapi to Coq) and the verification by Coq can be done **in parallel** by generating a Lambdapi/Coq file for each HOL-Light user-defined theorem

To scale up, we also need to share types and terms

On a machine with 32 processors i9-13950HX and 64Go RAM:

HOL-Light file	dump-simp	dump size	proof steps	nb theorems
hol . ml	3m57s	3 Go	5 M	5679
topology.ml	48m	52 Go	52 M	18866
HOL-Light file	make -j32 lp	make -j32	v v files siz	e make -j32 vo
hol . ml	51s	55s	1 Go	18m4s
topology.ml	22m22s	20m16s	68 Go	8h

Tools: hol2dk and lambdapi

https://github.com/Deducteam/hol2dk

- provides a small patch for HOL-Light to export proofs

improves ProofTrace [Polu 2019] by reducing memory consumption and adding on-the-fly writing on disk

- translates HOL-Light proofs to Dedukti and Lambdapi

https://github.com/Deducteam/lambdapi

– allows to converts dk/lp files using some encodings of HOL into Coq files